What’s New in MATLAB R2021b?

In this post I discuss some of the new features in MATLAB R2021b that captured my interest. See the release notes for a detailed list of the many changes in MATLAB and its toolboxes. For my articles about new features in earlier releases, see here.

High Order Runge–Kutta ODE Solvers

The MATLAB suite of solvers for ordinary differential equations previously contained 8 solvers, including 3 Runge-Kutta solvers: ode23, ode23tb, and ode45. The suite has been augmented with two new high-order Runge-Kutta solvers: ode78 uses 7th and 8th order Runge-Kutta formulas and ode89 uses 8th and 9th order Runge-Kutta formulas.

The documentation says that

  • ode78 and ode89 may be more efficient than ode45 on non-stiff problems that are smooth except possibly for a few isolated discontinuities.
  • ode89 may be more efficient than ode78 on very smooth problems, when integrating over long time intervals, or when tolerances are tight.
  • ode78 and ode89 may not be as fast or as accurate as ode45 in single precision.

Matrix to Scalar Power

The MATLAB mpower function is called by an exponentiation A^z when A is a matrix and z is a real or complex scalar. For the meaning of such arbitrary matrix powers see What Is a Fractional Matrix Power?

Previously, mpower used a diagonalization of A. For a matrix that is not diagonalizable, or is close to being not diagonalizaable, the results could be inaccurate. In R2021b a Schur–Padé algorithm, which employs a Schur decomposition in conjunction with Padé approximation, is used that works for all matrices. The difference in accuracy between the old and new versions of mpower is clearly demonstrated by computing the square root of a 2-by-2 Jordan block (a difficult case because it is defective).

% R2021a
>> A = [1 1; 0 1], X = A^(0.5), residual = A - X^2
A =
     1     1
     0     1
X =
     1     0
     0     1
residual =
     0     1
     0     0

% R2021b
>> A = [1 1; 0 1], X = A^(0.5), residual = A - X^2
A =
     1     1
     0     1
X =
   1.0000e+00   5.0000e-01
            0   1.0000e+00
residual =
     0     0
     0     0

Functions on nD Arrays

The new function pagesvd computes the singular value decomposition (SVD) of pages of nD arrays. A page is a 2D slice (i.e., a matrix) formed by taking all the elements in the first two dimensions and fixing the later subscripts. Related functions include pagemtimes for matrix multiplication abd pagetranspose for transposition, both introduced in R2020b. Better performance can be expected from these page functions than from explicit looping over the pages, especially for small-sized pages.

Improvements to Editor

Several improvements have been introduced to the MATLAB Editor. Ones that caught my eye are the ability to edit rectangular areas of text, automatic completion of block endings and delimiters, wrapping of comments, and changing the case of selected text. I do all my editing in Emacs, using the MATLAB major mode, and these sorts of things are either available or can be added by customization. However, these are great additions for MATLAB Editor users.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s