# What’s New in MATLAB R2020a and R2020b?

In this post I discuss new features in MATLAB R2020a and R2020b. As usual in this series, I focus on a few of the features most relevant to my work. See the release notes for a detailed list of the many changes in MATLAB and its toolboxes.

## Exportgraphics (R2020a)

The exportgraphics function is very useful for saving to a file a tightly cropped version of a figure with the border white instead of gray. Simple usages are

exportgraphics(gca,'image.pdf')
exportgraphics(gca,'image.jpg','Resolution',200)


I have previously used the export_fig function, which is not built into MATLAB but is available from File Exchange; I think I will be using exportgraphics instead from now on.

## Svdsketch (R2020b)

The new svdsketch function computes the singular value decomposition (SVD) $USV^T$ of a low rank approximation to a matrix ( $U$ and $V$ orthogonal, $S$ diagonal with nonnegative diagonal entries). It is mainly intended for use with matrices that are close to having low rank, as is the case in various applications.

This function uses a randomized algorithm that computes a sketch of the given $m$-by- $n$ matrix $A$, which is essentially a product $Q^TA$, where $Q$ is an orthonormal basis for the product $A\Omega$, where $\Omega$ is a random $n$-by- $k$ matrix. The value of $k$ is chosen automatically to achieve $\|USV^T-A\|_F \le \mathrm{tol}\|A\|_F$, where $\mathrm{tol}$ is a tolerance that defaults to $\epsilon^{1/4}$ and must not be less than $\epsilon^{1/2}$, where $\epsilon$ is the machine epsilon ( $2\times 10^{-16}$ for double precision). The algorithm includes a power method iteration that refines the sketch before computing the SVD.

The output of the function is an SVD in which $U$ and $V$ are numerically orthogonal and the singular values in $S$ of size $\mathrm{tol}$ or larger are good approximations to singular values of $A$, but smaller singular values in $S$ may not be good approximations to singular values of $A$.

Here is an example. The code

n = 8; rng(1); 8; A = gallery('randsvd',n,1e8,3);
[U,S,V] = svdsketch(A,1e-3);
rel_res = norm(A-U*S*V')/norm(A)
singular_values = [svd(A) [diag(S); zeros(n-length(S),1)]]


produces the following output, with the exact singular values in the first column and the approximate ones in the second column:

rel_res =
1.9308e-06
singular_values =
1.0000e+00   1.0000e+00
7.1969e-02   7.1969e-02
5.1795e-03   5.1795e-03
3.7276e-04   3.7276e-04
2.6827e-05   2.6827e-05
1.9307e-06            0
1.3895e-07            0
1.0000e-08            0


The approximate singular values are correct down to around $10^{-5}$, which is more than the $10^{-3}$ requested. This is a difficult matrix for svdsketch because there is no clear gap in the singular values of $A$.

The padding property of an axis puts some padding between the axis limits and the surrounding box. The code

x = linspace(0,2*pi,50); plot(x,tan(x),'linewidth',1.4)
title('Original axis')


produces the output  ## Turbo Colormap (2020b)

The default colormap changed from jet (the rainbow color map) to parula in R2014b (with a tweak in R2017a), because parula is more perceptually uniform and maintains information when printed in monochrome. The new turbo colormap is a more perceptually uniform version of jet, as these examples show. Notice that turbo has a longer transition through the greens and yellows. If you can’t give up on jet, use turbo instead.

Turbo: Jet: Parula: ## ND Arrays (R2020b)

The new pagemtimes function performs matrix multiplication on pages of $n$-dimensional arrays, while pagetranspose and pagectranspose carry out the transpose and conjugate transpose, respectively, on pages of $n$-dimensional arrays.

## Performance

Both releases report significantly improved speed of certain functions, including some of the ODE solvers.

## One thought on “What’s New in MATLAB R2020a and R2020b?”

1. Fred J. Hickernell says:

Thanks, Nick, for this and other posts. I use MATLAB a lot and was not aware of some of these enhancements. .