BOHEMIAN MATRICES: THE SYMBOLIC COMPUTATION APPROACH

L. GONZALEZ-VEGA,
J. SENDRA & J. R. SENDRA
CUNEF, UPM & UAH
SPAIN

WITH THE HELP OF R. M. CORLESS, E. Y. S CHAN & S. THORNTON

OUTLINE

- Bohemian Matrices
- Bohemian Correlation Matrices:
 - $# (BCM_{n:\{0,1\}})?$
- Correlation Matrices: characterisation.
- #(BCM_{n:{-1,0,1}})?
- Final questions.

BOHEMIAN MATRICES

http://www.bohemianmatrices.com

A family of Bohemians [BOunded HEight Matrix of Integers] is a set of matrices where the free entries are from the finite population P.

The family of 6×6 matrices with population $\{-1, +1\}$. Here are two instances out of the $2^{6^2} = 68.719.476.736$ possible:

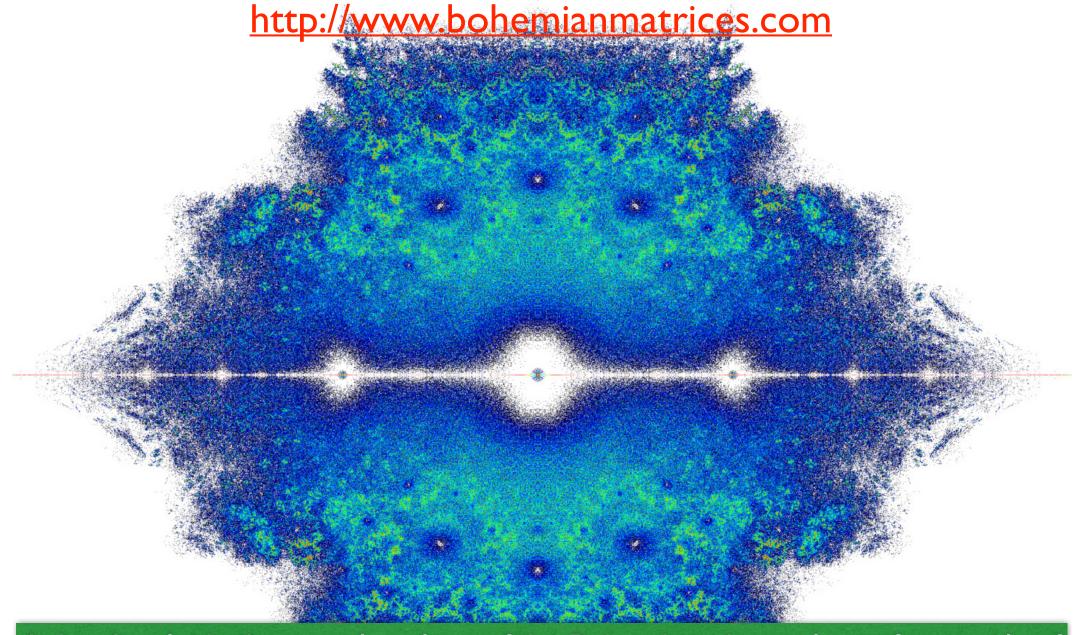
For a given dimension, population and characteristics, the set of Bohemian matrices is finite and these are examples of typical questions we want to answer:

- How many of them are singular?
- What is the maximum determinant?
- How many distinct characteristic polynomials does the family have?
- How many distinct eigenvalues does the family contain?
- What is the distribution of the number of different real eigenvalues? Patterns?

By brute-force computation on all $2^{36} = 68.719.476.736$ matrices, there are 43.090.149.376 singular matrices.

Language	Time
Maple ⁵	270 days
Matlab	10 days
Julia	31 hours
Python (sequential)	20 days
Python (batched)	17 hours
C++	4.75 hours
CPDB	124ms

CPDB: Characteristic Polynomial Database



A density plot in the complex plane of the Bohemian eigenvalues of a sample of 100 million 15x15 tridiagonal matrices. The entries are sampled from $\{-1, 0, 1\}$. Color represents the eigenvalue density and the plot is viewed on [-3-3i, 3+3i]. Plot produced by Cara Adams.

Motivations & Applications:

- Software testing. We have found bugs in major packages (Steven Thornton has computed many many many ... eigenvalues).
- Understanding Random Matrices (Random Polynomials by A.T. Bharucha-Reid & M. Sambandham, Chapter 3, 1986).
- Our original Bohemian family, the Mandelbrot matrices invented by Piers Lawrence, has given rise to a genuinely new kind of companion matrix (Chan & Corless @ ELA 32 (2017)), and to what we now call Algebraic Linearisations (Chan et al @ LAA 563 (2019), 373–399) for Non Linear Eigenvalue Problems (solving det(A(x))=0).
- Many connections to combinatorics and graph theory.

ON THE NUMBER OF CORRELATION MATRICES IN THE SET OF NXN BOHEMIAN MATRICES WHEN N IS FIXED

 $\#(BCM_{n:\{0,1\}})$

Problem at hand

Data:

- Population: 0 and 1 or -1, 0 and 1 or -1 and 1.
- Type of matrices: n x n Bohemian Matrices.
- **BM**_{n:{0,1}} or **BM**_{n:{-1,0,1}} or **BM**_{n:{-1,1}}.

Output:

For every n, compute the number of correlation matrices in the set BM_{n:{0,1}}: BCM_{n:{0,1}}

An $n \times n$ symmetric matrix A is a correlation matrix if

- It has ones on the diagonal.
- All its eigenvalues are nonnegative.

Applications:

Population in the closed interval [-1,1].

Problem at hand

n	total matrices	# correl	proportion correl
3	8	5	6.25e-1
4	64	15	2.34e-1
5	1024	52	5.08e-2
6	32768	203	6.20e-3
7	2097152	877	4.18e-4

Nick Higham's table from Manchester Bohemian Workshop, 2018

Out of the 2^binomial($\mathbf{8}$,2) = 268.435.456 possibilities, there are only $\mathbf{4140}$ correlation matrices giving a proportion of 1.54e-5. Computing time was 24 hours and a few minutes.

The solution

OF INTEGER SEQUENCES ®

founded in 1964 by N. J. A. Sloane

5, 15, 52, 203, 877, 4140

Search

Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:5,15,52,203,877,4140

Displaying 1-10 of 40 results found.

page 1 2 3 4

Sort: relevance | references | number | modified | created Format: long | short | data

A000110

Bell or exponential numbers: number of ways to partition a set of n labeled elements. (Formerly M1484 N0585)

+30954

1, 1, 2, **5, 15, 52, 203, 877, 4140**, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, 51724158235372, 474869816156751, 4506715738447323, 44152005855084346, 445958869294805289, 4638590332229999353, 49631246523618756274 (list; graph; refs; listen; history; text; internal format)

$$B_n = rac{1}{e} \sum_{k=0}^\infty rac{k^n}{k}$$

$$\sum_{k=0}^{\infty} rac{k^n}{k!} \quad B_{n+1} = \sum_{k=0}^n inom{n}{k} B_k \quad \sum_{n=0}^{\infty} rac{B_n}{n!} x^n = e^{e^x - 1}.$$

$$\sum_{n=0}^{\infty} rac{B_n}{n!} x^n = e^{e^x-1}$$

The solution

```
a(n+1) is the number of (symmetric) positive semidefinite n X n 0-1 matrices.
These correspond to equivalence relations on {1,...,n+1}, where matrix
element M[i,j] = 1 if and only if i and j are equivalent to each other but
not to n+1. - Robert Israel, Mar 16 2011
```


Experiments

How computations were performed?

- First approach with Matlab for computing eigenvalues giving wrong results for n=7 due to precision problems.
- Second approach: Maple but avoiding eigenvalue computations (see later).

CORRELATION MATRICES: CHARACTERISATIONS

The characterisation

Theorem

Let A be a symmetric $n \times n$ matrix. Then we have:

- A is positive definite $\Leftrightarrow D_k > 0$ for all leading principal minors
- A is negative definite $\Leftrightarrow (-1)^k D_k > 0$ for all leading principal minors
- A is positive semidefinite $\Leftrightarrow \Delta_k \geq 0$ for all principal minors
- A is negative semidefinite $\Leftrightarrow (-1)^k \Delta_k \geq 0$ for all principal minors

Too many principal minors to check: *binomial(n,k)* for 1≤*k*≤*n*

The characterisation

All eigenvalues of A are nonnegative

if and only if

Proof: A is symmetric, real and Descartes Rule of Signs

The characterisation

For a sequence of real numbers b_0, b_1, \ldots, b_n , $\mathbf{Var}(b_0, b_1, \ldots, b_n)$ will denote the number of sign changes in b_0, b_1, \ldots, b_n after dropping the zeros in the sequence.

Descartes' Rule of Signs:

Let P be the polynomial in $\mathbb{R}[x]$:

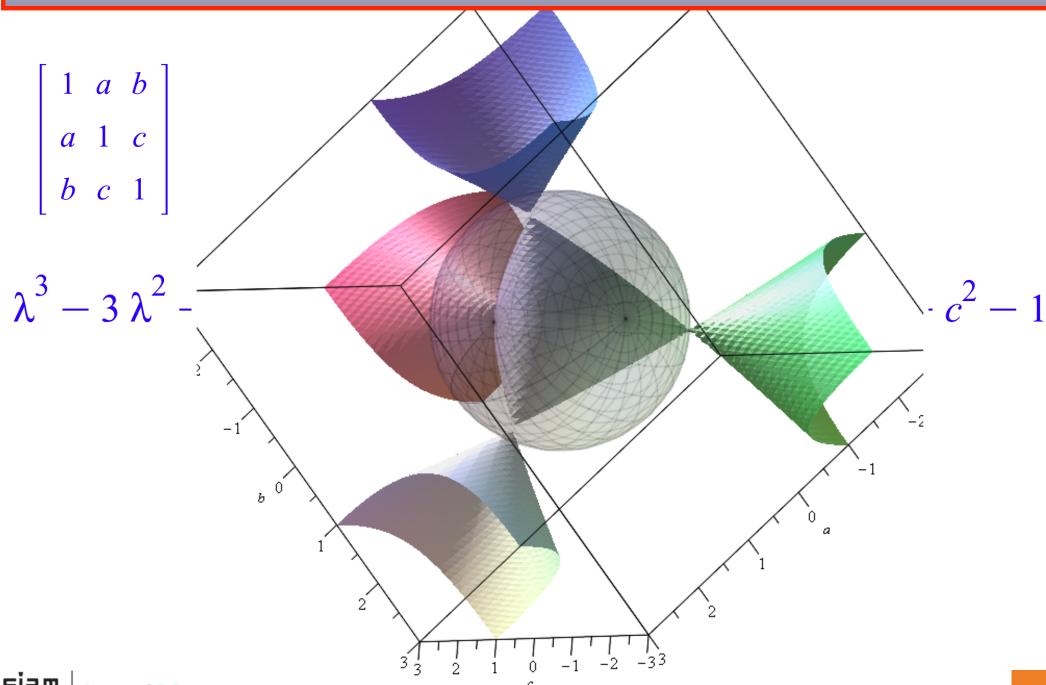
$$P(x) = \sum_{k=0}^{n} a_k x^k.$$

The number of positive real roots of P(x) = 0, counted with multiplicity, is equal to

$$\mathbf{Var}(a_n, a_{n-1}, \dots, a_0) - 2k$$

 $for\ some\ non-negative\ integer\ k$.

When all roots are known to be real, Descartes' Rule of Signs is exact (taking into account the multiplicities). And this is the case!



Annual Me

CUNEF

CUNE

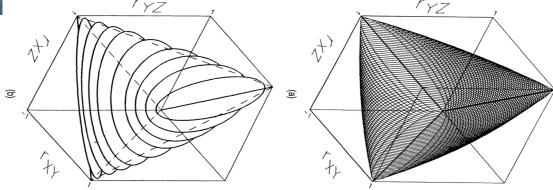
$$\begin{bmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{bmatrix}$$

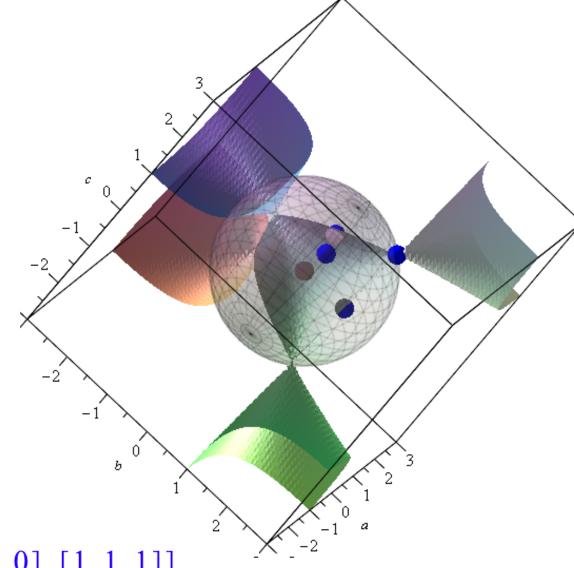
$$\lambda^{3} - 3 \lambda^{2} - (a^{2} + b^{2} + c^{2} - 3) \lambda - 2 a b c + a^{2} + b^{2} + c^{2} - 1$$

Correlation matrices. Characterisation when n=3:

$$\left[a^2 + b^2 + c^2 - 3 \le 0, -2 \ a \ b \ c + a^2 + b^2 + c^2 - 1 \le 0\right]$$

P. J. Rousseeuw and G. Molenberghs: *The Shape of Correlation Matrices*. The American Statistician 48, 276-279, 1994.





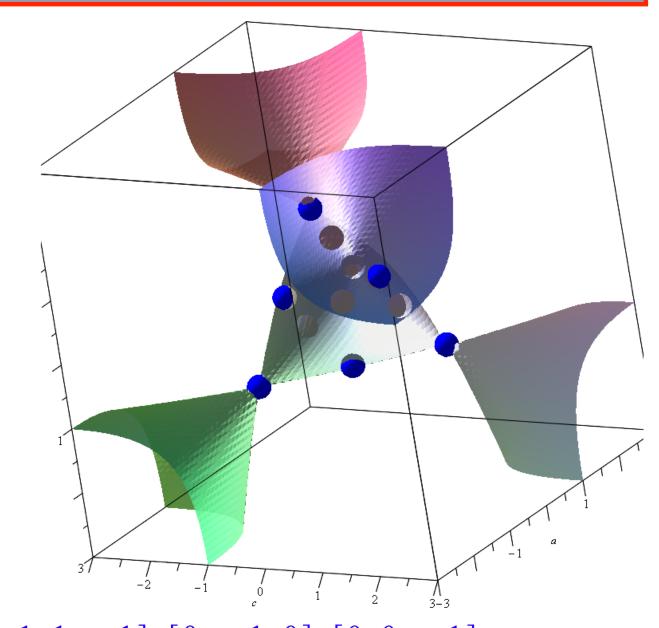
 $BCM_{:\{0,1\}}$

[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1]]

 1
 a
 b

 a
 1
 c

 b
 c
 1



 $BCM_{3:\{-1,0,1\}}$

[[-1, -1, 1], [-1, 0, 0], [-1, 1, -1], [0, -1, 0], [0, 0, -1],[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, -1, -1], [1, 0, 0], [1, 1, 1]]

Correlation matrices. Characterisation when n = 4:

$$-a^2 - b^2 - c^2 - d^2 - e^2 - f^2 + 6 \ge 0$$

$$-2 a b c - 2 a d e - 2 b d f - 2 c e f + 2 a^{2} + 2 b^{2} + 2 c^{2} + 2 d^{2} + 2 e^{2} + 2 f^{2} - 4 \le 0$$

$$a^{2}f^{2} - 2\ a\ b\ ef - 2\ a\ c\ df + b^{2}\ e^{2} - 2\ b\ c\ d\ e + c^{2}\ d^{2} + 2\ a\ b\ c + 2\ a\ d\ e + 2\ b\ df + 2\ c\ ef - a^{2} - b^{2} - c^{2} - d^{2} - e^{2} - f^{2} + 1 \ge 0$$

Correlation matrices. Characterisation when n=4:

$$-a^2 - b^2 - c^2 - d^2 - e^2 - f^2 + 6 \ge 0$$

$$-2 a b c - 2 a d e - 2 b d f - 2 c e f + 2 a^{2} + 2 b^{2} + 2 c^{2} + 2 d^{2} + 2 e^{2} + 2 f^{2} - 4 \le 0$$

$$a^{2}f^{2} - 2\ a\ b\ ef - 2\ a\ c\ df + b^{2}\ e^{2} - 2\ b\ c\ d\ e + c^{2}\ d^{2} + 2\ a\ b\ c + 2\ a\ d\ e + 2\ b\ df + 2\ c\ ef - a^{2} - b^{2} - c^{2} - d^{2} - e^{2} - f^{2} + 1 \ge 0$$

What about the geometry of this set?

Experiments (continued)

Maple based:

- First case not in Nick's table: n=8.
- The coefficients of the characteristic polynomial are easy to compute and easier to evaluate when population are integer numbers, rational numbers,

ON THE NUMBER OF CORRELATION MATRICES IN THE SET OF NXN BOHEMIAN MATRICES WHEN N IS FIXED

$$\#(BCM_{n:\{-1,0,1\}}), \#(BCM_{n:\{-1,1\}}), \ldots$$

More experiments

n	BM _{n:{-1,0,1}}	BCM _{n:{-1,0,1}}	%
3	27	11	40.74%
4	729	49	6.72%
5	59049	257	0.43%
6	14348907	1282	0.0089 %

11,49,257,1282

Search

Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:11,49,257,1282

Sorry, but the terms do not match anything in the table.

More properties

- \bigcirc All matrices in **BCM**_{n:{-1,0,1}} except the identity are singular.
- \bigcirc The eigenvalues of the matrices in $BCM_{n:\{-1,0,1\}}$ belong to the set

$$\{0, 1, 2, ..., n\}$$
 and there is always, at least, one multiple eigenvalue.

 \bigcirc All matrices in **BCM**_{n:{-1,1}} have the same characteristic polynomial:

$$\lambda^{n} - n \lambda^{n-1} = \lambda^{n-1} (\lambda - n)$$

- #(BCM_{n:{-1,1}}) = 2^{n-1} .
- **BCM**_{n: $\{1,0\}$} encodes Bell numbers (partitions of a set) and their characteristic polynomials encode the partitions of n.

FINAL QUESTIONS

Ongoing work

Many questions to answer yet!

- $= \#(\mathbf{BCM}_{n:\{-1,0,1\}}) ?$
- To understand the "inequalities"?
- How to use these inequalities to deal with the Correlation Matrix Completion Problem?

- The Bohemian Matrices and Applications Workshop (Manchester 2018 organised by Rob Corless and Nick Higham):
 - * https://www.maths.manchester.ac.uk/~higham/conferences/bohemian.php
- The Bohemian Matrix Minisymposium at ICIAM 2019 (Valencia) organised by Rob Corless and Nick Higham.

http://www.bohemianmatrices.com

Thanks!

