

Solving parabolic PDEs in half precision

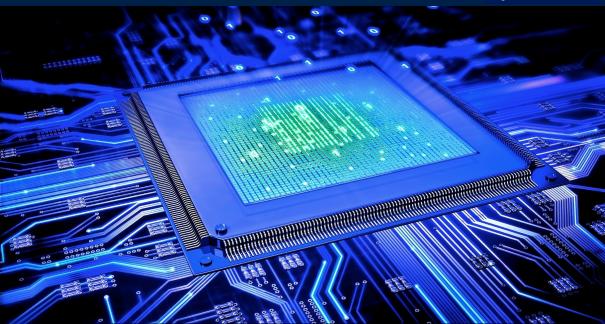
MATTEO CROCI & MIKE GILES Mathematical Institute University of Oxford

SIAM Conference on Computational Science and Engineering 2021

Mathematics

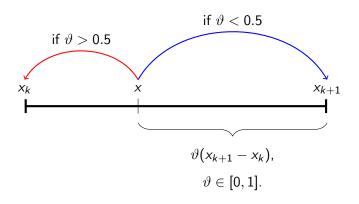


Objective: developing low-precision PDE solvers

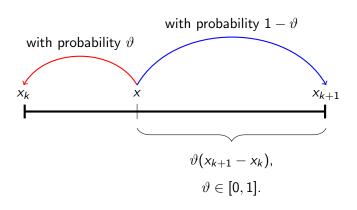


Background

A 3-step guide to solving the heat equation in low precision

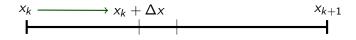


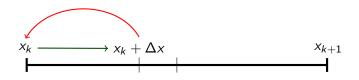
$$fl(x) = x(1 + \delta)$$
, with $|\delta| \le u$.

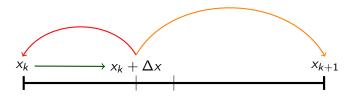


$$\operatorname{sr}(x) = x(1 + \delta(\omega)), \quad \text{with} \quad |\delta(\omega)| \le 2u, \quad \text{and} \quad \mathbb{E}[\operatorname{sr}(x)] = x.$$

RtN might cause stagnation







Heat equation with nonzero forcing

We consider the heat equation with non-zero forcing:

$$\begin{cases} \dot{\mathfrak{u}}(t,\boldsymbol{x}) = \nabla^2 \, \mathfrak{u}(t,\boldsymbol{x}) + f(t,\boldsymbol{x}), & \boldsymbol{x} \in D = [0,1]^d, \quad t > 0, \\ \mathfrak{u}(0,\boldsymbol{x}) = \mathfrak{u}_0(x), & \boldsymbol{x} \in D, \\ \mathfrak{u}(t,\boldsymbol{x}) = g(\boldsymbol{x}), & \boldsymbol{x} \in \partial D, & t > 0. \end{cases}$$

We use finite differences in space and a Runge-Kutta method in time with discretisation parameters: Δt , h, $\lambda = \Delta t/h^2$.

Heat equation with nonzero forcing

We consider the heat equation with non-zero forcing:

$$\begin{cases} \dot{\mathfrak{u}}(t,\boldsymbol{x}) = \nabla^2 \, \mathfrak{u}(t,\boldsymbol{x}) + f(t,\boldsymbol{x}), & \boldsymbol{x} \in D = [0,1]^d, \quad t > 0, \\ \mathfrak{u}(0,\boldsymbol{x}) = \mathfrak{u}_0(x), & \boldsymbol{x} \in D, \\ \mathfrak{u}(t,\boldsymbol{x}) = g(\boldsymbol{x}), & \boldsymbol{x} \in \partial D, & t > 0. \end{cases}$$

We use finite differences in space and a Runge-Kutta method in time with discretisation parameters: Δt , h, $\lambda = \Delta t/h^2$.

Let A be the (spd) stiffness matrix. The numerical scheme is:

$$\boldsymbol{U}^{n+1} = S\boldsymbol{U}^n + \Delta t \boldsymbol{F}^n$$

for some matrix S dependent on ΔtA . For instance,

$$\boldsymbol{U}^{n+1} = (I - \Delta t A) \boldsymbol{U}^n + \Delta t \boldsymbol{F}_{\mathsf{FE}}^n, \quad (\mathsf{FE}), \qquad \boldsymbol{U}^{n+1} = (I + \Delta t A)^{-1} \boldsymbol{U}^n + \Delta t \boldsymbol{F}_{\mathsf{BE}}^n, \quad (\mathsf{BE}).$$

We work in **bfloat16 half precision**, $u = 2^{-8} \approx 4 \times 10^{-3}$.

Everything extends to FEM and linear parabolic equations.

Background

A 3-step guide to solving the heat equation in low precision

1) Local rounding errors and the delta form

How to best implement the Runge-Kutta scheme? Use the **delta form!**

Standard form:
$$U^{n+1} = SU^n + \Delta t F^n$$
.

Delta form:
$$\boldsymbol{U}^{n+1} = \boldsymbol{U}^n + \Delta t \left(-\tilde{S}A\boldsymbol{U}^n + \tilde{\boldsymbol{F}}^n \right) = \boldsymbol{U}^n + \Delta \boldsymbol{U}^n$$
.

e.g.
$$S_{\text{FE}}=(I-\Delta tA)$$
, $\tilde{S}_{\text{FE}}=1$, and $S_{\text{BE}}=\tilde{S}_{\text{BE}}=(I+\Delta tA)^{-1}$.

1) Local rounding errors and the delta form

How to best implement the Runge-Kutta scheme? Use the **delta form!**

Standard form:
$$U^{n+1} = SU^n + \Delta t F^n$$
.

Delta form:
$$\boldsymbol{U}^{n+1} = \boldsymbol{U}^n + \Delta t \left(-\tilde{S}A\boldsymbol{U}^n + \tilde{\boldsymbol{F}}^n \right) = \boldsymbol{U}^n + \Delta \boldsymbol{U}^n$$
.

e.g.
$$S_{\text{FE}}=(I-\Delta tA)$$
, $\tilde{S}_{\text{FE}}=1$, and $S_{\text{BE}}=\tilde{S}_{\text{BE}}=(I+\Delta tA)^{-1}$.

- Errors in the computation of SU^n are of order u (machine precision).
- Errors in the computation of ΔU^n are of order $\Delta t^p u$, $p \geq 0$.

We prove that:

- The delta form produces much smaller rounding errors at each time step.
- Most of the rounding errors in the delta form are introduced into the final addition.

2) Exploit exact subtraction

How to best implement the matrix-vector product $-AU^n$?

$$\frac{\mathbf{U}_{i+1}^{n}-2\mathbf{U}_{i}^{n}+\mathbf{U}_{i-1}^{n}}{h^{2}},\qquad \frac{(\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n})-(\mathbf{U}_{i}^{n}-\mathbf{U}_{i-1}^{n})}{h^{2}}.$$

2) Exploit exact subtraction

How to best implement the matrix-vector product $-AU^n$?

$$\frac{\mathbf{U}_{i+1}^{n}-2\mathbf{U}_{i}^{n}+\mathbf{U}_{i-1}^{n}}{h^{2}}, \qquad \frac{(\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n})-(\mathbf{U}_{i}^{n}-\mathbf{U}_{i-1}^{n})}{h^{2}}.$$

Leads to $O(h^{-2})$ **error!** Leads to near-exact matvecs.

A similar trick works for FEM as well. Only requires small modification of CSR matvecs.

2) Exploit exact subtraction

How to best implement the matrix-vector product $-AU^n$?

$$\frac{\mathbf{U}_{i+1}^{n}-2\mathbf{U}_{i}^{n}+\mathbf{U}_{i-1}^{n}}{h^{2}}, \qquad \frac{(\mathbf{U}_{i+1}^{n}-\mathbf{U}_{i}^{n})-(\mathbf{U}_{i}^{n}-\mathbf{U}_{i-1}^{n})}{h^{2}}.$$

Leads to $O(h^{-2})$ **error!** Leads to near-exact matvecs.

A similar trick works for FEM as well. Only requires small modification of CSR matvecs.

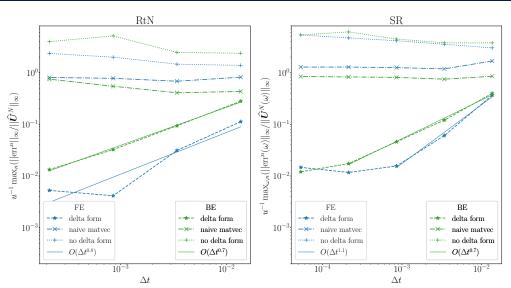
Parts of a Theorem [C. and Giles 2020]

If $a,b\in\mathbb{R}$ are exactly represented in floating point arithmetic, and

$$|a-b| \leq \min(|a|,|b|)$$

then (a - b) is computed exactly.

See also Section 2.5 in "Accuracy and Stability of Numerical Algorithms" by Nick Higham.



Note: from now on we use the delta form with "smart" matvecs.

Why is RtN in low precision bad for parabolic equations?

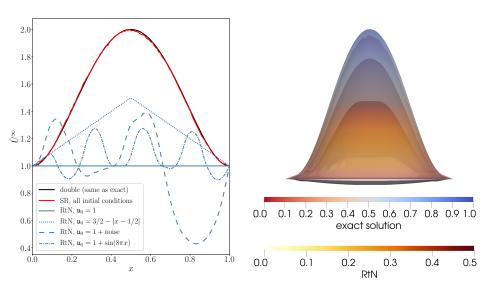
a) Stagnation:

- RtN always stagnates for sufficiently small Δt (recall $\Delta U^n = O(u\Delta t^p)$).
- The RtN solution is initial condition, discretization and precision dependent.

b) Global error:

- RtN rounding errors are strongly correlated and cannot be modelled as zero-mean independent random variables.
- RtN global errors grow like $O(u\Delta t^{-1})$ until stagnation.

SR fixes all these issues!



RtN computations are discretization and initial condition dependent. SR works!

3b) Global rounding errors [C. and Giles 2020]

Let $\varepsilon^n \in \mathbb{R}^K$ be the vector containing all rounding errors introduced at time step n.

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, $|\varepsilon_i^n| \le \varepsilon = O(u)$ for all n, i.

 $\mathbf{SR:}$ the $\varepsilon_{\pmb{i}}^n$ are zero-mean spatially independent and temporally mean-independent.

3b) Global rounding errors [C. and Giles 2020]

Let $\varepsilon^n \in \mathbb{R}^K$ be the vector containing all rounding errors introduced at time step n.

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, $|\varepsilon_i^n| \le \varepsilon = O(u)$ for all n, i.

SR: the ε_i^n are zero-mean spatially independent and temporally mean-independent.

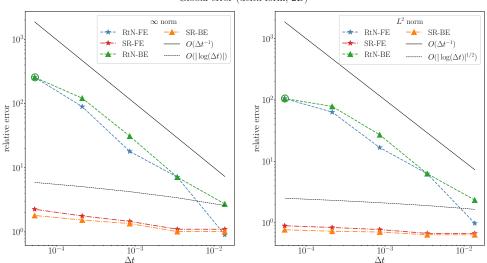
Mode	Norm	1D	2D	3D
RtN	L^2, ∞	$O(arepsilon \Delta t^{-1})$	$O(\varepsilon \Delta t^{-1})$	$O(arepsilon \Delta t^{-1})$
SR	$\mathbb{E}[\cdot _{\infty}]$	$O(arepsilon \Delta t^{-1/4} \ell(\Delta t)^{1/2})$	$O(arepsilon\ell(\Delta t))$	$O(arepsilon \ell(\Delta t)^{1/2})$
SR	$\mathbb{E}[\cdot _{L^2}^2]^{1/2}$	$O(arepsilon \Delta t^{-1/4})$	$O(arepsilon \ell(\Delta t)^{1/2})$	$O(\varepsilon)$

Asymptotic global rounding error blow-up rates; $\ell(\Delta t) = |\log(\lambda^{-1}\Delta t)|$. Note that the RtN rates are well-known [Henrici 1962-1963, Jézéquel 1995].

Spatial independence of SR errors means more error cancellation in higher dimensions!

3b) Global rounding errors (here at steady-state)

Global error (delta form, 2D)



Note: relative error = error $\times (u||\boldsymbol{U}^N||)^{-1}$

- Working in low precision can bring large speed, memory and energy consumption improvements. New hardware supports low-precision.
- SR might be an effective way of obtaining accurate results in much lower precision when solving time-dependent parabolic PDEs.
- Custom-built C++ low-precision emulator (bitbucket.org/croci/libchopping/) inspired by [Higham and Pranesh 2019] and Milan Kloewer's Julia routines (github.com/milankl?tab=repositories).

Current/future research directions

- Hyperbolic PDEs, stabilised explicit RK methods, nested multilevel Monte Carlo.
- Weather forecasting and brain simulation applications.

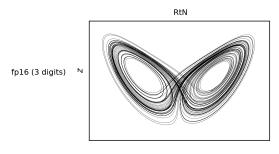
Thank you for listening!

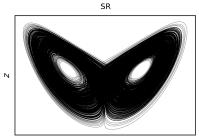
Preprint, slides, and more info at: https://croci.github.io

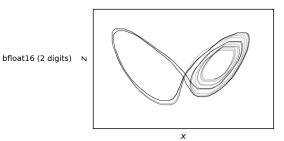
- [1] M. Croci and M. B. Giles. Effects of round-to-nearest and stochastic rounding in the numerical solution of the heat equation in low precision, 2020. URL http://arxiv.org/abs/2010.16225.
- [2] M. P. Connolly, N. J. Higham, and T. Mary. Stochastic Rounding and its Probabilistic Backward Error Analysis, 2020. URL https://hal.archives-ouvertes.fr/hal-02556997/document.
- [3] N. J. Higham and T. Mary. A new approach to probabilistic rounding error analysis. *SIAM Journal of Scientific Computing*, 41(5):2815–2835, 2019. doi: 10.1137/18M1226312.
- [4] N. J. Higham and S. Pranesh. Simulating low precision floating-point arithmetic. *SIAM Journal on Scientific Computing*, 41(5):C585–C602, 2019. doi: 10.1137/19M1251308.
- [5] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.
- [6] F. Jézéquel. Round-off error propagation in the solution of the heat equation by finite differences. Journal of Universal Computer Science, 1(7):465–479, 1995.
- [7] M. Arató. Round-off error propagation in the integration of ordinary differential equations by one step methods. Acta Scientiarium Mathematicarum, 45:23-31, 1983. doi: 10.13140/2.1.3920.9608.
- [8] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. John Wiley & Sons, Inc., 1962.

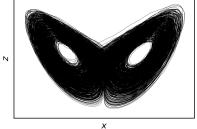
M. Croci

Promising results (by Milan Kloewer in Oxford Physics)



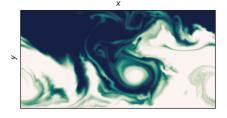


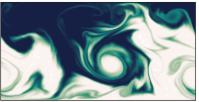




Prominsing results (by Milan Kloewer in Oxford Physics)

fp16 (3 digits) + SR





fp64 (15 digits)

Stagnation fl($x + \epsilon$) = x occurs whenever $\frac{u}{2}|x| \ge |\epsilon|$. For the PDE:

$$\frac{u}{2}|\mathfrak{u}(t_n, \mathbf{x_i})| \approx \frac{u}{2}|\hat{\mathbf{U}}_i^n| \geq |\Delta \hat{\mathbf{U}}_i^n| = |\hat{\mathbf{U}}_i^{n+1} - \hat{\mathbf{U}}_i^n| \approx \Delta t |\hat{\mathbf{u}}(t_n, \mathbf{x_i})|,$$

This shows that \hat{U}_{i}^{n} will not be updated whenever

$$|\mathfrak{u}(t_n, \mathbf{x_i})| \gtrsim 2(\Delta t/u)|\dot{\mathfrak{u}}(t_n, \mathbf{x_i})|.$$

More formally,

Lemma [C. and Giles 2020]

Assume that the delta form is used and that p>0. If there exists $\epsilon>0$ such that $|\hat{\pmb{U}}_{\pmb{i}}^{\bar{n}}| \geq \epsilon$ for some \pmb{i} , \bar{n} , then there exists $\tau(\epsilon)>0$ such that if $\Delta t<\tau$, we have $\hat{\pmb{U}}_{\pmb{i}}^{\bar{n}}=\hat{\pmb{U}}_{\pmb{i}}^{\bar{n}}$ for all $n\geq \bar{n}$.