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[ICE—SHEET MODEL (I)]

“In climate modelling, Ice-sheet models use numerical methods to simulate the
evolution, dynamics and thermodynamics of ice sheets.” (wikipedia)

Model f-\lguﬂthm (single timestep)

1. Evaluate driving stress 7 = pghVs
2. Solve for velocities
DO =1, max_iter
i. Evaluate nonlinear viscosity v from
iterate u,
ii. Construct stress matrix A}
ii. Solve linear system A u,, = 14
iv. (Exit if converged)
ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

Credit: 8Damiewl Goldberg |
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“In climate modelling, Ice-sheet models use numerical methods to simulate the
evolution, dynamics and thermodynamics of ice sheets.” (wikipedia)

Model Algon'thm (single timestep)

1. Evaluate driving stress 7 = pghVs
2. Solve for velocities
DO =1, max_iter
i. Evaluate nonlinear viscosity v from
iterate u,
ii. Construct stress matrix A}
iii. Solve lingar system A U, = 14
iv. (Exit if converged)
ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

Credit: (Panieﬂl Goldberg |

Simpler Version:
proc Model Algorithm(uo, y)
begin
Do stuff;
for i =0 ton do
wip1 = fi(ui);
Do stuff;
end
/* F(UO):fnofn—lo...OfO(uO) */
Compute VF(uo)y ;

end
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[ICE—SHEET‘NHDDEL UI)]

A quick reminder about the gradient:

F(ug) = fno fa—10...0 f10 foluo)

VF(uo)y = Jfo(uo)" - V(fno f1)(u1) -y

Jfo(uo)™ - T fr(un)™ oo T faca(un—1)" - T fa(un)” -y

JfT = Transpose Jacobian matrix of f;

w1 = fi(ui) = fi (fi-c10...0 fo(uo))-

Do



[A BETTER SOLUTION?]

VF(uo)y = J fo(uo)” - Jfr(ur)” ... T e (un—1)" - T fu(un)" -y

proc Algo A(uo,y)
begin
Do stuff;
for i =0 ton do
w1 = fi(uq);
Do stuff;
end
Compute VF (ug)y;
end

Do
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[A BETTER SOLUTION?)

VF(uo)y = J fo(uo)” - Jfr(ur)” ... T e (un—1)" - T fu(un)" -y

proc Algo A(uo,y) proc Algo B(ug,vy)
begin begin
Do stuff; Do stuff;
for i =0 ton do for : =0 ton do
wit1 = fi(uq); uit1 = fi(us);
Do stuff; Do stuff;
end vig1 = v; - Jfip1(wip1) T
Compute V F(uo)y; end
end end
— What is the problem with Algo A? — What is the problem with Algo B?
V F(uo)y = (( . (JfoT : JflT) . an_lT) .anT) y n MatMat ops
VF(u)y =Jfo" - (JflT R (anflT . (anT . y) )) n MatVec ops
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Do



Fi(x;) = xig1
Fi(zi, Zip1) = T

[ADJOINT COMPUTATION]
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Fi(z;) = x4
Fi(zi,Tit1) = T;
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[RELATION TO TA? (I)]

GoogleNet graph:

Source : Internet :s



[RELATION TO TA? (I)]

GoogleNet graph:

Convolution
Pooling

Concat/Normalize

. . 8
Source : ,Internet :s , g



[RELATION TOo TA? (II)

Derivatives in machine learning

“Backprop” and gradient descent are at the core of all recent advances
Computer vision
ILSVRC top-5 error on ImageNet

28

2o W mO W Hew Ao

Top-5 error rate for ImageNet (NVIDIA devblog) Faster R-CNN (Ren et al. 2015) NVIDIA DRIVE PX 2 segmentation

Speech recognition & synthesis  Machine translation

s e R R s
Se |, Technoloy or 197002000 chsmn e [ c c c z c = =

z
é 1 —wmmm. § X N r———
3. — ]
™ T
Word error rates (Huang et al., 2014) Google Neural Machine Translation System (GNMT) ‘

Source: Baydin, Beyond backprop: Automatic differentiation in machine learning, 2017.
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Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.
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Peak Mem
6

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.
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» Memory to store output of

computations (z; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION)

Peak Mem

Example of execution
Strategy Time Space

Store all $ $59$
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[PROBLEM FORMULATION)

We want to minimize the makespan of:

Initial state:

AC graph: | size [

Steps: | ug,up
Memory: | ¢pm, Wy =7m =0, | Min = {20}
Storage k: | cp, Wk, Tk, Sini =0
—Ael—{al—Bl— A 1]




[EXISTING WORK]

Question: How to organize the reverse execution of intermediate steps?
What do we store, what do we recompute?

» Store all: memory expensive
» Recompute all: compute expensive

» Intermediate status?



[BOUNDED MEMORY)

Griewand and Walther, 2000: REVOLVE(!, ¢,,), optimal algorithm with ¢,, memory
slots.

[

Figure 1.3: Example of Parallel Reversal Using 3 Checkpoints

Source: Andrea Walther’s PhD thesis, 1999

9



[STORAGE HIERARCHY]

A., Herrmann, Hovland, Robert, 2015: Optimal algorithm for two level of storage:
cheap bounded memory and costly unbounded disks.
A., Herrmann, 2019: Library of optimal schedules for any number of storage level.

(https://gitlab.inria.fr/adjoint-computation)

—— REVOLVE —— PER-REV-REVOLVE
; ;
f f
h h hd e Revo forward phase 2 H
£ g
f \ i3 5
[ 0 ; )

0

Size of AC gragh Size of AC graph

(a) arch_1.txt (b) arch_2.txt

Fig. 5. Relative performance of the heuristics compared to the optimal solution on hierarchical platforms for
large graph sizes.


https://gitlab.inria.fr/adjoint-computation
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[WHAT DIRECTIONS FOR AI?]

Then what? Are we done? Just let AD people and ML people talk together!
Cut the middle-(scheduling)-people!

Source: A graffiti in Paris (twitter)
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(DIr. FOR Al: GRAPH STRUCTURE)

Remember this google network:

Convolution
Pooling
Nice try, we are not going to

help you with this for free Google ®

Concat/Normalize



(DIR. FOR Al: GRAPH STRUCTURE II]

Classification loss

Image features

[
Similarity loss

Fig. 2. Schematic of the used

Figure 1: Siamese Neural Network Architecture

Source: Suris et al., Cross-Modal Embeddings

Vid d Audio Retri 1, 2018
Source: Rao et al., A Deep Siamese Neural for Video an uaro hetrieva

Network (...), 2016



(DIR. FOR Al: GRAPH STRUCTURE II]

Pitchfork graph' (aka join graphs):

Theorem (A., Beaumont, Herrmann, Shilova, 2019)

Given a bounded memory and a pitchfork with a bounded number of “teeth”, we can find in
polynomial time the solution that backpropagates it in minimal time.

IThis should not be seen as an endorsement of the YJ movement, I don’t think I'm allowed to
give publicly my opinion. e . . &



Three phase algorithm:
1 Forward phase
2 Turn

3 Backward phase
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Three phase algorithm:
1 Forward phase
2 Turn
3 Backward phase
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[A GRASP OF THE PROOF? (I)]

» Traverse all branches. Write some
intermediate data

» Backpropagate the handle of the pitchfork
» Iteratively, read some checkpointed data
from one of the branches, backpropagate a

subset of the graph (can write additional
intermediate data)



[A GRASP OF THE PROOF? (II)]

It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.
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It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.
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GRASP OF THE PROOF? (II)]

Lemma (Stability 1)

If F; is “backpropagated”, then there are
no Fj fori < j.
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It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

[A GRASP OF THE PROOF? (II)]

Lemma (Checkpoint persistence)

If x; s stored, until F; is
“backpropagated”, there are no F; for
j <.
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[A GRASP OF THE PROOF? (II)]

It relies on key properties of the
backward phase:

> Stability of execution Lemma (Stability 2)
» Checkpoint persistence

If x; is read, then there are no F; on

which give us a multi-phase approach. other branches until it is backpropagated.
-
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It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

[A GRASP OF THE PROOF? (II)]

In this case, for a given forward phase,
we get a multi-phase backward phase:

F B B Fia
——0——0—+——F—F—0@—+—0@—F—
‘T ‘T % ‘f f Forward phase

» Where do we schedule the
checkpoints in the forward phase?

» In which order do we execute the
subsegment on each branch?
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» From an adjoint perspective: Yes!
With a memory of size O(M):
> Store All can execute a graph of size O(M) in time O(M);
» Revolve can execute a graph of size O(eM) in time O(MeM)!
» H-Revolve inproves performance by a factor of magnitude.



[IS IT WORTH IT?]
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» From an adjoint perspective: Yes!
With a memory of size O(M):
> Store All can execute a graph of size O(M) in time O(M);
» Revolve can execute a graph of size O(eM) in time O(MeM)!
» H-Revolve inproves performance by a factor of magnitude.

» Machine Learning perspective: deeper networks!



[IS IT WORTH IT?]

Aradical new neural

) network design could
> From a scheduling persg gvercome big bblems)

challengesin Al
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» From an adjoint persped _ A
With a memory of size (@ reesssiccnmesinnean
P Store All can execute|: st ocenteriz o1 e O(M);
» Revolve can execute 3 e O(MeM)!
» H-Revolve inproves p¢ n e

inal gnitude.

An Al researcher at the University of Toronto, he wanted to build a
deep-learning model that would predict a patient’s health over time.
But data from medical records is kind of messy: throughout your lfe,
» M achine Learning p ersp k£ you might vsitthe docto
generating a smattering of measurements at arbitrary intervals. A
traditional neural network struggles to handle this, Its design requires

fferent times for different reasons,

it to learn from data with clear stages of observation. Thus it is a
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