Adjoint computation and Backpropagation

Guillaume Pallez (Aupy)
Inria \& University of Bordeaux

Meeting of the Royal Society, April 2019

Automatic Differentiation

Paul Hovland (Argonne)

Krishna Narayanan (Argonne)
Machine Learning (I)

Alexis Joly (Inria)
Navjot Kukreja (Imperial College)

Machine Learning (II)

Alena Shilova (Inria)
Scheduling

Guillaume Pallez (Inria)
Olivier Beaumont (Inria)

Julien Herrmann (Inria)

Adjoint Computation and Backpropagation

```
ICE-SHEET MODEL (I)
```

"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

Model Algorithm (single timestep)

1. Evaluate driving stress $\tau_{d}=\rho g h \nabla s$
2. Solve for velocities

DO $i=1$, max_iter
i. Evaluate nonlinear viscosity v_{i} from iterate \boldsymbol{u}_{j}
ii. Construct stress matrix $A\{v\}$
iii. Solve linear system $A \boldsymbol{u}_{i+1}=\tau_{d}$
iv. (Exit if converged)

ENDDO
3. Evolve thickness (continuity eqn)

Automatic differentiation (AD) tools generate code for adjoint of operations
"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

Model Algorithm (single timestep)

1. Evaluate driving stress $\tau_{d}=\rho g h \nabla s$
2. Solve for velocities
```
DO i=1, max_iter
i. Evaluate nonlinear viscosity \(v_{i}\) from iterate \(\boldsymbol{u}_{i}\)
ii. Construct stress matrix \(A\{v\}\)
```

iii. Solve linear system $A u_{i+1}=\tau_{d}$
iv. (Exit if converged)

ENDDO
3. Evolve thickness (continuity eqn)

Automatic differentiation (AD) tools generate code for adjoint of operations

```
Simpler Version:
proc Model Algorithm( }\mp@subsup{u}{0}{},\boldsymbol{y}
begin
    Do stuff;
    for i=0 to n do
        u}\mp@subsup{i}{+1}{}=\mp@subsup{f}{i}{}(\mp@subsup{u}{i}{})
        Do stuff;
    end
    /* F(u}\mp@subsup{u}{0}{})=\mp@subsup{f}{n}{}\circ\mp@subsup{f}{n-1}{}\circ\ldots\circ\mp@subsup{f}{0}{}(\mp@subsup{u}{0}{})\quad*
    Compute \nablaF F(uo)y;
end
```


ICE-SHEET MODEL (II)

A quick reminder about the gradient:

$$
\begin{aligned}
F\left(u_{0}\right) & =f_{n} \circ f_{n-1} \circ \ldots \circ f_{1} \circ f_{0}\left(u_{0}\right) \\
\nabla F\left(u_{0}\right) \boldsymbol{y} & =J f_{0}\left(u_{0}\right)^{T} \cdot \boldsymbol{\nabla}\left(f_{n} \circ f_{1}\right)\left(u_{1}\right) \cdot \boldsymbol{y} \\
& =J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y} \\
& \begin{array}{l}
J f^{T}=\text { Transpose Jacobian matrix of } f ; \\
u_{i+1}=f_{i}\left(u_{i}\right)=f_{i}\left(f_{i-1} \circ \ldots \circ f_{0}\left(u_{0}\right)\right) .
\end{array}
\end{aligned}
$$

A BETTER SOLUTION?

$$
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}
$$

```
proc Algo A(u
begin
    Do stuff;
    for i=0 to n do
        u}\mp@subsup{u}{+1}{}=\mp@subsup{f}{i}{}(\mp@subsup{u}{i}{})
        Do stuff;
    end
    Compute \nabla F F(uo) y;
end
```

$$
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}
$$

```
proc Algo A(u
begin
    Do stuff;
    for i=0 to n do
        ui+1}=\mp@subsup{f}{i}{(}(\mp@subsup{u}{i}{})
        Do stuff;
    end
    Compute \nabla F (un) y;
end
```

\rightarrow What is the problem with Algo A?

A BETTER SOLUTION?

$$
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}
$$

```
proc Algo A(u
begin
    Do stuff;
    for i=0 to n do
        u}\mp@subsup{u}{+1}{}=\mp@subsup{f}{i}{}(\mp@subsup{u}{i}{})
        Do stuff;
    end
    Compute \nabla F (u0) y;
end
```

```
proc Algo \(\mathrm{B}\left(u_{0}, \boldsymbol{y}\right)\)
begin
    Do stuff;
    for \(i=0\) to \(n\) do
        \(u_{i+1}=f_{i}\left(u_{i}\right)\);
        Do stuff;
        \(v_{i+1}=v_{i} \cdot J f_{i+1}\left(u_{i+1}\right)^{T} ;\)
    end
end
```

\rightarrow What is the problem with Algo A?

A BETTER SOLUTION?

$$
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}
$$

```
proc Algo A(u
begin
    Do stuff;
    for i=0 to n do
        u}\mp@subsup{u}{+1}{}=\mp@subsup{f}{i}{}(\mp@subsup{u}{i}{})
        Do stuff;
    end
    Compute \nabla F (uo) )}\boldsymbol{y}
end
```

\rightarrow What is the problem with Algo A?

```
proc Algo B(uo,y)
begin
    Do stuff;
    for i=0 to n do
    ui+1}=\mp@subsup{f}{i}{}(\mp@subsup{u}{i}{})
    Do stuff;
    vi+1}=\mp@subsup{v}{i}{}\cdotJ\mp@subsup{f}{i+1}{}(\mp@subsup{u}{i+1}{}\mp@subsup{)}{}{T}
    end
end
\(\rightarrow\) What is the problem with Algo B?
```


A BETTER SOLUTION?

$$
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}
$$

```
proc Algo A(u
begin
    Do stuff;
    for i=0 to n do
        ui+1}=\mp@subsup{f}{i}{}(\mp@subsup{u}{i}{})
        Do stuff;
    end
    Compute \nabla F F(uo) y;
end
```

```
proc Algo B(uo,y)
begin
    Do stuff;
    for i=0 to n do
    ui+1}=\mp@subsup{f}{i}{}(\mp@subsup{u}{i}{})
    Do stuff;
    vi+1}=\mp@subsup{v}{i}{}\cdotJ\mp@subsup{f}{i+1}{}(\mp@subsup{u}{i+1}{}\mp@subsup{)}{}{T}
    end
end
```

\rightarrow What is the problem with Algo B?
\rightarrow What is the problem with Algo A?

$$
\begin{array}{ll}
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=\left(\left(\ldots\left(J f_{0}{ }^{T} \cdot J f_{1}{ }^{T}\right) \cdot \ldots \cdot J f_{n-1}{ }^{T}\right) \cdot J f_{n}{ }^{T}\right) \cdot \boldsymbol{y} & n \text { MatMat ops } \\
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}{ }^{T} \cdot\left(J f_{1}{ }^{T} \cdot \ldots \cdot\left(J f_{n-1}{ }^{T} \cdot\left(J f_{n}{ }^{T} \cdot \boldsymbol{y}\right) \ldots\right)\right) & n \text { MatVec ops }
\end{array}
$$

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<l \\
\bar{F}_{i}\left(x_{i}, \bar{x}_{i+1}\right) & =\bar{x}_{i} & & i \leq l
\end{aligned}
$$

$$
\begin{aligned}
& F_{i}\left(x_{i}\right)=x_{i+1} \quad i<l \\
& \bar{F}_{i}\left(x_{i}, \bar{x}_{i+1}\right)=\bar{x}_{i} \quad i \leq l \\
& \xrightarrow{x_{0}} \text { For }_{0} \xrightarrow{x_{1}} F_{F_{1}}^{x_{2}} \cdots \xrightarrow{x_{l-2}}{ }_{F_{l-2}} \xrightarrow{x_{l-1}} F_{l-1}
\end{aligned}
$$

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<\boldsymbol{l} \\
\overline{\boldsymbol{F}}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\boldsymbol{i}}, \overline{\boldsymbol{x}}_{\boldsymbol{i}+\boldsymbol{1}}\right) & =\overline{\boldsymbol{x}}_{\boldsymbol{i}} & & \boldsymbol{i} \leq \boldsymbol{l}
\end{aligned}
$$

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<l \\
\bar{F}_{i}\left(x_{i}, \bar{x}_{i+1}\right) & =\bar{x}_{i} & & i \leq l
\end{aligned}
$$

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<l \\
\bar{F}_{i}\left(x_{i}, \bar{x}_{i+1}\right) & =\bar{x}_{i} & & i \leq l
\end{aligned}
$$

Relation to IA? (I)

GoogleNet graph:

Source : Internet :s
\qquad

\qquad
\qquad

GoogleNet graph:

Derivatives in machine learning

"Backprop" and gradient descent are at the core of all recent advances

Computer vision

Speech recognition \& synthesis

Word error rates (Huang et al., 2014)

Faster R-CNN (Ren et al. 2015)
Machine translation

Google Neural Machine Translation System (GNMT)

NVIDIA DRIVE PX 2 segmentation

4

- Memory to store output of

Example of execution computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
Strategy Time Space Strategy Time Space

- Memory to store output of

Example of execution computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
Strategy Time Space Strategy Time Space

- Memory to store output of

Example of execution computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.

Strategy Time Space

- Memory to store output of

Example of execution computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
Strategy Time Space Strategy Time Space

- Memory to store output of

Example of execution computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.

Strategy Time Space

Model of execution

\qquad Strategy Time Space

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of

Example of execution computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state:

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"
Peak Mem

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"
Peak Mem

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of execution

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of ExECUTION

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of ExECUTION

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$

Store "none"

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of execution

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$

- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

- Memory to store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$
Memory Reuse	$\$$	$\$$

Model of execution

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$
Memory Reuse	$\$$	$\$$

Model of execution

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$
Memory Reuse	$\$$	$\$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$
Memory Reuse	$\$$	$\$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$
Memory Reuse	$\$$	$\$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$
Memory Reuse	$\$$	$\$$

Model of ExECUTION

- Memory to store output of computations $\left(x_{i}\right.$ or $\left.\bar{x}_{i}\right)$. Initial state: contains x_{0}.
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Example of execution

Strategy	Time	Space
Store all	$\$$	$\$ \$ \$$
Store "none"	$\$ \$ \$$	$\$$
No reuse	$\$ \$$	$\$ \$$
Memory Reuse	$\$$	$\$$

Problem formulation

We want to minimize the makespan of:

		Initial state:
AC graph:	size l	
Steps:	u_{f}, u_{b}	
Memory:	$c_{m}, w_{m}=r_{m}=0$,	$\mathcal{M}_{\text {ini }}=\left\{x_{0}\right\}$
Storage $k:$	c_{k}, w_{k}, r_{k},	$S_{\text {ini }}=\emptyset$

Existing work

Question: How to organize the reverse execution of intermediate steps? What do we store, what do we recompute?

- Store all: memory expensive
- Recompute all: compute expensive
- Intermediate status?

Bounded memory

Griewand and Walther, 2000: Revolve $\left(l, c_{m}\right)$, optimal algorithm with c_{m} memory slots.

Figure 1.3: Example of Parallel Reversal Using 3 Checkpoints

Storage hierarchy

A., Herrmann, Hovland, Robert, 2015: Optimal algorithm for two level of storage: cheap bounded memory and costly unbounded disks.
A., Herrmann, 2019: Library of optimal schedules for any number of storage level.
(https://gitlab.inria.fr/adjoint-computation)

What directions for AI?

Then what? Are we done? Just let AD people and ML people talk together!

What directions for AI?

Then what? Are we done? Just let AD people and ML people talk together! Cut the middle-(scheduling)-people!

Source: A graffiti in Paris (twitter)

What directions for AI?

While the core of the algorithms remain similar, the problematics are different:

- Shallower graphs ($O(100-1000)$ levels $)$.
- Cost functions (time/memory) are not necessarily uniform.
- Graphs with more structure than chains.
- Multi-Learners/Hyperparameter tuning (independent graphs executed simultaneously), shared memory?
- Etc.

What directions for AI?

While the core of the algorithms remain similar, the problematics are different:

- Shallower graphs ($O(100-1000)$ levels $)$.
- Cost functions (time/memory) are not necessarily uniform.
- Graphs with more structure than chains.
- Multi-Learners/Hyperparameter tuning (independent graphs executed simultaneously), shared memory?
- Etc.

> Pffiew, just saved my job

What directions for AI?

While the core of the algorithms remain similar, the problematics are different:

- Shallower graphs ($O(100-1000)$ levels $)$.
- Cost functions (time/memory) are not necessarily uniform.
- Graphs with more structure than chains.
- Multi-Learners/Hyperparameter tuning (independent graphs executed simultaneously), shared memory?
- Etc.

> Pffiew, just saved my job

Dir. FOR AI: Graph structure

Remember this google network:

Dir. For AI: Graph structure

Remember this google network:

Dir. For AI: Graph structure II

Figure 1: Siamese Neural Network Architecture

Source: Rao et al., A Deep Siamese Neural Network (...), 2016

Source: Surís et al., Cross-Modal Embeddings for Video and Audio Retrieval, 2018

Dir. for AI: Graph structure II

Pitchfork graph ${ }^{1}$ (aka join graphs):

Theorem (A., Beaumont, Herrmann, Shilova, 2019)

Given a bounded memory and a pitchfork with a bounded number of "teeth", we can find in polynomial time the solution that backpropagates it in minimal time.

[^0] give publicly my opinion.

A Grasp of the proof? (I)

Three phase algorithm:
(1) Forward phase

2 Turn
(3) Backward phase

A Grasp of the proof? (I)

Three phase algorithm:
(1) Forward phase
(2) Turn
(3) Backward phase

- Traverse all branches. Write some intermediate data

A Grasp of the proof? (I)

Three phase algorithm:
(1) Forward phase
(2) Turn
(3) Backward phase

- Traverse all branches. Write some intermediate data
- Backpropagate the handle of the pitchfork

A Grasp of the proof? (I)

Three phase algorithm:
(1) Forward phase

2 Turn
(3) Backward phase

- Traverse all branches. Write some intermediate data
- Backpropagate the handle of the pitchfork
- Iteratively, read some checkpointed data from one of the branches, backpropagate a subset of the graph (can write additional intermediate data)

It relies on key properties of the backward phase:

- Stability of execution
- Checkpoint persistence
which give us a multi-phase approach.

It relies on key properties of the backward phase:

- Stability of execution
- Checkpoint persistence
which give us a multi-phase approach.

Lemma (Stability 1)

If F_{i} is "backpropagated", then there are no F_{j} for $i \leq j$.

It relies on key properties of the backward phase:

- Stability of execution
- Checkpoint persistence
which give us a multi-phase approach.

Lemma (Checkpoint persistence)
If x_{i} is stored, until F_{i} is
"backpropagated", there are no F_{j} for $j<i$.

It relies on key properties of the backward phase:

- Stability of execution
- Checkpoint persistence
which give us a multi-phase approach.

Lemma (Stability 2)

If x_{i} is read, then there are no F_{j} on other branches until it is backpropagated.

It relies on key properties of the backward phase:

- Stability of execution
- Checkpoint persistence
which give us a multi-phase approach.

In this case, for a given forward phase, we get a multi-phase backward phase:

- Where do we schedule the checkpoints in the forward phase?
- In which order do we execute the subsegment on each branch?

Is IT WORTH IT?

- From a scheduling perspective: Yes! (new fun problems)
- From a scheduling perspective: Yes! (new fun problems)
- From an adjoint perspective: Yes! With a memory of size $O(M)$:
- Store All can execute a graph of size $O(M)$ in time $O(M)$;
- Revolve can execute a graph of size $O\left(e^{M}\right)$ in time $O\left(M e^{M}\right)$!
- H-Revolve inproves performance by a factor of magnitude.
- From a scheduling perspective: Yes! (new fun problems)
- From an adjoint perspective: Yes! With a memory of size $O(M)$:
- Store All can execute a graph of size $O(M)$ in time $O(M)$;
- Revolve can execute a graph of size $O\left(e^{M}\right)$ in time $O\left(M e^{M}\right)$!
- H-Revolve inproves performance by a factor of magnitude.
- Machine Learning perspective: deeper networks!

[^0]: ${ }^{1}$ This should not be seen as an endorsement of the YJ movement, I don't think I'm allowed to

