ADJOINT COMPUTATION AND BACKPROPAGATION

Guillaume Pallez (Aupy)

Inria & University of Bordeaux

Meeting of the Royal Society, April 2019

Automatic Differentiation

Paul Hovland (Argonne)

g Navjot Kukreja (Imperial College)

Krishna Narayanan (Argonne)

Machine Learning (I)

. Alexis Joly (Inria)

[WHO’S WHO]

Machine Learning (IT)

3
! Alena Shilova (Inria)

Scheduling

aa ¥
/

-

~r

——a Guillaume Pallez (Inria)

% A% Olivier Beaumont (Inria)

h Julien Herrmann (Inria)

D~

ierarchical Algorithms on

ierarchical rchitectures

Hatem itaicl, George Turkiy o' & David Keves
Extrcme Colnpuning Fesearch “entar (ECRC)
King Abdullanh University of S icihce and Technology

ADJOINT COMPUTATION AND
BACKPROPAGATION

[ICE—SHEET MODEL (I)]

“In climate modelling, Ice-sheet models use numerical methods to simulate the
evolution, dynamics and thermodynamics of ice sheets.” (wikipedia)

Model f-\lguﬂthm (single timestep)

1. Evaluate driving stress 7 = pghVs
2. Solve for velocities
DO =1, max_iter
i. Evaluate nonlinear viscosity v from
iterate u,
ii. Construct stress matrix A}
ii. Solve linear system A u,, = 14
iv. (Exit if converged)
ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

Credit: 8Damiewl Goldberg |

(=Y

[ICE-SHEET MODEL (I)]

“In climate modelling, Ice-sheet models use numerical methods to simulate the
evolution, dynamics and thermodynamics of ice sheets.” (wikipedia)

Model Algon'thm (single timestep)

1. Evaluate driving stress 7 = pghVs
2. Solve for velocities
DO =1, max_iter
i. Evaluate nonlinear viscosity v from
iterate u,
ii. Construct stress matrix A}
iii. Solve lingar system A U, = 14
iv. (Exit if converged)
ENDDO
3. Evolve thickness (continuity egn)

Automatic differentiation
(AD) tools generate code
for adjoint of operations

Credit: (Panieﬂl Goldberg |

Simpler Version:
proc Model Algorithm(uo, y)
begin
Do stuff;
for i =0 ton do
wip1 = fi(ui);
Do stuff;
end
/* F(UO):fnofn—lo...OfO(uO) */
Compute VF(uo)y ;

end

(=Y

[ICE—SHEET‘NHDDEL UI)]

A quick reminder about the gradient:

F(ug) = fno fa—10...0 f10 foluo)

VF(uo)y = Jfo(uo)" - V(fno f1)(u1) -y

Jfo(uo)™ - T fr(un)™ oo T faca(un—1)" - T fa(un)” -y

JfT = Transpose Jacobian matrix of f;

w1 = fi(ui) = fi (fi-c10...0 fo(uo))-

Do

[A BETTER SOLUTION?]

VF(uo)y = J fo(uo)” - Jfr(ur)” ... T e (un—1)" - T fu(un)" -y

proc Algo A(uo,y)
begin
Do stuff;
for i =0 ton do
w1 = fi(uq);
Do stuff;
end
Compute VF (ug)y;
end

Do

[A BETTER SOLUTION?]

VF(uo)y = J fo(uo)” - Jfr(ur)” ... T e (un—1)" - T fu(un)" -y

proc Algo A(uo,y)
begin
Do stuff;
for i =0 ton do
w1 = fi(uq);
Do stuff;
end
Compute VF (ug)y;
end

— What is the problem with Algo A?

Do

[A BETTER SOLUTION?]

VF(uo)y = J fo(uo)” - Jfr(ur)” ... T e (un—1)" - T fu(un)" -y

proc Algo A(uo,y) proc Algo B(ug,vy)
begin begin
Do stuff; Do stuff;
for i =0 ton do for i =0 to n do
wit1 = fi(ui); wit1 = fi(uq);
Do stuff; Do stuff;
end vig1 = v; - Jfip1(wip1) T
Compute VF (ug)y; end
end end

— What is the problem with Algo A?

Do

[A BETTER SOLUTION?)

VF(uo)y = J fo(uo)” - Jfr(ur)” ... T e (un—1)" - T fu(un)" -y

proc Algo A(uo,y) proc Algo B(ug,vy)
begin begin
Do stuff; Do stuff;
for i =0 ton do for i =0 to n do
wit1 = fi(ui); wit1 = fi(uq);
Do stuff; Do stuff;
end vig1 = v; - Jfip1(wip1) T
Compute VF (ug)y; end
end end
— What is the problem with Algo A? — What is the problem with Algo B?

Do

[A BETTER SOLUTION?)

VF(uo)y = J fo(uo)” - Jfr(ur)” ... T e (un—1)" - T fu(un)" -y

proc Algo A(uo,y) proc Algo B(ug,vy)
begin begin
Do stuff; Do stuff;
for i =0 ton do for : =0 ton do
wit1 = fi(uq); uit1 = fi(us);
Do stuff; Do stuff;
end vig1 = v; - Jfip1(wip1) T
Compute V F(uo)y; end
end end
— What is the problem with Algo A? — What is the problem with Algo B?
V F(uo)y = ((. (JfoT : JflT) . an_lT) .anT) y n MatMat ops
VF(u)y =Jfo" - (JflT R (anflT . (anT . y))) n MatVec ops

3 o ° o o

Do

Fi(x;) = xig1
Fi(zi, Zip1) = T

[ADJOINT COMPUTATION]

i<
1<l

(=5

[ADJOINT COMPUTATION]

Fz(:liz) =®Ti11 1<
Fi(wi, Tiv1) = T 1 <1

€ T2 fL'lQ Ty—1
S fE o E - A

(=5

Fi(z;) = x4
Fi(zi,Tit1) = T;

[ADJOINT COMPUTATION]

1<
1<l

(=5

Lo

[ADJOINT COMPUTATION]

.FZ(.ZCJ =241 1< l
Fi(l‘i,i‘i+1) =I; 1 <1

-2

T T2 Ti—1
=0 L N = Ry
2 Ti—1 Xy

q e R
Zy—1 Zy .

(=5

[ADJOINT COMPUTATION]

.FZ(.ZCJ =241 1< l
Fi(l‘i,i‘i+1) =I; 1 <1

—1#] e B e Fi

(=5

[RELATION TO TA? (I)]

GoogleNet graph:

Source : Internet :s

[RELATION TO TA? (I)]

GoogleNet graph:

Convolution
Pooling

Concat/Normalize

. . 8
Source : ,Internet :s , g

[RELATION TOo TA? (II)

Derivatives in machine learning

“Backprop” and gradient descent are at the core of all recent advances
Computer vision
ILSVRC top-5 error on ImageNet

28

2o W mO W Hew Ao

Top-5 error rate for ImageNet (NVIDIA devblog) Faster R-CNN (Ren et al. 2015) NVIDIA DRIVE PX 2 segmentation

Speech recognition & synthesis Machine translation

s e R R s
Se |, Technoloy or 197002000 chsmn e [c c c z c = =

z
é 1 —wmmm. § X N r———
3. —]
™ T
Word error rates (Huang et al., 2014) Google Neural Machine Translation System (GNMT) ‘

Source: Baydin, Beyond backprop: Automatic differentiation in machine learning, 2017.

3 o 3 o

Do

[MODEL OF EXECUTION]

[7 1]

N

=)

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

H-<
\

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

Example of execution
Strategy Time Space

[MODEL OF EXECUTION]

[7 1]

N

=)

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

|

e mm

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Example of execution
Strategy Time Space

El
E

=
|

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

Example of execution
Strategy Time Space

[MODEL OF EXECUTION]

El
E

=
|

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

=

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

k Peak Mem
;

Example of execution
Strategy Time Space

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

P Peak Mem
P 6

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

N

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Example of execution
Strategy Time Space

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
6

Example of execution

» Memory to store output of Strategy Time Space

computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

—F A

» Memory to store output of

computations (z; or Z;). Initial state:

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION)

Peak Mem

Example of execution
Strategy Time Space

Store all $ 59

10

[MODEL OF EXECUTION]

El
E

Peak Mem

=
|

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution

» Memory to store output of Strategy Time Space

Store all $ 59

computations (x; or Z;). Initial state:
Store “none”

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

El
E

Peak Mem

=
|

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

El
E

Peak Mem

=
|

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
Fo Fy 3

Example of execution

» Memory to store output of Strategy Time Space

Store all $ 59

computations (x; or Z;). Initial state:
Store “none”

contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
DA : :

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
Fy 3

Example of execution
Strategy Time Space
Store all $ 6

Store “none”

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

ﬁ

2

0
Fy

Fo F F

Example of execution
Strategy Time Space
Store all $ 6
$ $

Store “none” $

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

$

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
4

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

10

[MODEL OF EXECUTION]

Peak Mem
4

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

@\ Peak Mem
Fy R 4

Example of execution
Strategy Time Space

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Store all 59
Store “none” $$$ $

No reuse $$ 3
» Cost to write: w,, =0,

» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
Fo Iat 4

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

EE
iy

Peak Mem

Example of execution
Strategy Time Space

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Store all 59
Store “none” $$$ $

No reuse $$ 3
» Cost to write: w,, =0,

» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

I3 Peak Mem
Fy R 4

Example of execution
Strategy Time Space

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Store all 59
Store “none” $$$ $

No reuse $$ 3
» Cost to write: w,, =0,

» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
Fo Fz 4

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

EE
iy

Peak Mem

Example of execution
Strategy Time Space

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Store all $ 59
Store “none” $$$ $

No reuse $$ 3
» Cost to write: w,, =0,

» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

ﬁ

2

0
Fy

Fo F

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
F 4

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
F 4

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

g

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
4

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem

N

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Example of execution
Strategy Time Space
Store all
Store “none” $
No reuse $$ $$

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
4

Example of execution
Strategy Time Space
Store all 6
Store “none” $$$ $
No reuse $$ $$

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

» Cost to write: w,, =0,
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
4

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Cost to write: w,, =0, Memory Reuse $ $
» Cost to read: 7, = 0.

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

10

[MODEL OF EXECUTION]

Peak Mem
F 4

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Cost to write: w,, =0, Memory Reuse $ $
» Cost to read: 7, = 0.

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

Peak Mem
F 4

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Cost to write: w,, =0, Memory Reuse $ $
» Cost to read: 7, = 0.

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$
» Cost to write: w,, =0, Memory Reuse $ $
» Cost to read: 7, = 0.

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

Peak Mem

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Cost to write: w,, =0, Memory Reuse $ $
» Cost to read: 7, = 0.

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

[MODEL OF EXECUTION]

Peak Mem

N

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Cost to write: w,, =0, Memory Reuse $ $
» Cost to read: 7, = 0.

[MODEL OF EXECUTION]

Peak Mem
4

Example of execution
Strategy Time Space
Store all $ 6
Store “none” $$$ $
No reuse $$ $$

» Cost to write: w,, =0, Memory Reuse $ $
» Cost to read: 7, = 0.

» Memory to store output of
computations (x; or Z;). Initial state:
contains xg.

[PROBLEM FORMULATION)

We want to minimize the makespan of:

Initial state:

AC graph: | size [

Steps: | ug,up
Memory: | ¢pm, Wy =7m =0, | Min = {20}
Storage k: | cp, Wk, Tk, Sini =0
—Ael—{al—Bl— A 1]

[EXISTING WORK]

Question: How to organize the reverse execution of intermediate steps?
What do we store, what do we recompute?

» Store all: memory expensive
» Recompute all: compute expensive

» Intermediate status?

[BOUNDED MEMORY)

Griewand and Walther, 2000: REVOLVE(!, ¢,,), optimal algorithm with ¢,, memory
slots.

[

Figure 1.3: Example of Parallel Reversal Using 3 Checkpoints

Source: Andrea Walther’s PhD thesis, 1999

9

[STORAGE HIERARCHY]

A., Herrmann, Hovland, Robert, 2015: Optimal algorithm for two level of storage:
cheap bounded memory and costly unbounded disks.
A., Herrmann, 2019: Library of optimal schedules for any number of storage level.

(https://gitlab.inria.fr/adjoint-computation)

—— REVOLVE —— PER-REV-REVOLVE
; ;
f f
h h hd e Revo forward phase 2 H
£ g
f \ i3 5
[0 ;)

0

Size of AC gragh Size of AC graph

(a) arch_1.txt (b) arch_2.txt

Fig. 5. Relative performance of the heuristics compared to the optimal solution on hierarchical platforms for
large graph sizes.

https://gitlab.inria.fr/adjoint-computation

[WHAT DIRECTIONS FOR AI?]

Then what? Are we done? Just let AD people and ML people talk together!

[WHAT DIRECTIONS FOR AI?]

Then what? Are we done? Just let AD people and ML people talk together!
Cut the middle-(scheduling)-people!

Source: A graffiti in Paris (twitter)

[WHAT DIRECTIONS FOR AI?]

While the core of the algorithms remain similar, the problematics are different:

vvyyy

v

Shallower graphs (O(100 — 1000) levels).
Cost functions (time/memory) are not necessarily uniform.
Graphs with more structure than chains.

Multi-Learners/Hyperparameter tuning (independent graphs executed
simultaneously), shared memory?

Etc.

[WHAT DIRECTIONS FOR AI?]

While the core of the algorithms remain similar, the problematics are different:

vvyyy

v

Shallower graphs (O(100 — 1000) levels).
Cost functions (time/memory) are not necessarily uniform.
Graphs with more structure than chains.

Multi-Learners/Hyperparameter tuning (independent graphs executed
simultaneously), shared memory?

Etc.

Pffiew, just saved my job

[WHAT DIRECTIONS FOR AI?]

While the core of the algorithms remain similar, the problematics are different:

vvyyy

v

Shallower graphs (O(100 — 1000) levels).
Cost functions (time/memory) are not necessarily uniform.
Graphs with more structure than chains.

Multi-Learners/Hyperparameter tuning (independent graphs executed
simultaneously), shared memory?

Etc.

Pffiew, just saved my job

Remember this google network:

(DIr. FOR Al: GRAPH STRUCTURE)

Convolution
Pooling

Concat/Normalize

(DIr. FOR Al: GRAPH STRUCTURE)

Remember this google network:

Convolution
Pooling
Nice try, we are not going to

help you with this for free Google ®

Concat/Normalize

(DIR. FOR Al: GRAPH STRUCTURE II]

Classification loss

Image features

[
Similarity loss

Fig. 2. Schematic of the used

Figure 1: Siamese Neural Network Architecture

Source: Suris et al., Cross-Modal Embeddings

Vid d Audio Retri 1, 2018
Source: Rao et al., A Deep Siamese Neural for Video an uaro hetrieva

Network (...), 2016

(DIR. FOR Al: GRAPH STRUCTURE II]

Pitchfork graph' (aka join graphs):

Theorem (A., Beaumont, Herrmann, Shilova, 2019)

Given a bounded memory and a pitchfork with a bounded number of “teeth”, we can find in
polynomial time the solution that backpropagates it in minimal time.

IThis should not be seen as an endorsement of the YJ movement, I don’t think I'm allowed to
give publicly my opinion. e . . &

Three phase algorithm:
1 Forward phase
2 Turn

3 Backward phase

— 00—

[A GRASP OF THE PROOF? (I)]

Three phase algorithm:
1 Forward phase
2 Turn
3 Backward phase

RN
B0 0 &

[A GRASP OF THE PROOF? (I)]

» Traverse all branches. Write some
intermediate data

[A GRASP OF THE PROOF? (I)]

Three phase algorithm:
1 Forward phase

2 Turn » Traverse all branches. Write some
intermediate data

» Backpropagate the handle of the pitchfork

3 Backward phase

Three phase algorithm:
1 Forward phase
2 Turn
3 Backward phase

P
e meea

[A GRASP OF THE PROOF? (I)]

» Traverse all branches. Write some
intermediate data

» Backpropagate the handle of the pitchfork
» Iteratively, read some checkpointed data
from one of the branches, backpropagate a

subset of the graph (can write additional
intermediate data)

[A GRASP OF THE PROOF? (II)]

It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

.44]—4]_4]_.

3

It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

(A

GRASP OF THE PROOF? (II)]

Lemma (Stability 1)

If F; is “backpropagated”, then there are
no Fj fori < j.

[| O O o
[| O O0——0 o
[| O O o O0——0 /

It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

[A GRASP OF THE PROOF? (II)]

Lemma (Checkpoint persistence)

If x; s stored, until F; is
“backpropagated”, there are no F; for
j <.

E L]
1]
.

[A GRASP OF THE PROOF? (II)]

It relies on key properties of the
backward phase:

> Stability of execution Lemma (Stability 2)
» Checkpoint persistence

If x; is read, then there are no F; on

which give us a multi-phase approach. other branches until it is backpropagated.
-
.4> O— B—
.4.|:|—>

It relies on key properties of the
backward phase:

» Stability of execution
» Checkpoint persistence

which give us a multi-phase approach.

[A GRASP OF THE PROOF? (II)]

In this case, for a given forward phase,
we get a multi-phase backward phase:

F B B Fia
——0——0—+——F—F—0@—+—0@—F—
‘T ‘T % ‘f f Forward phase

» Where do we schedule the
checkpoints in the forward phase?

» In which order do we execute the
subsegment on each branch?

IS 1T WORTH I1T? '

[IS IT WORTH IT?]

» From a scheduling perspective: Yes! (new fun problems)

[IS IT WORTH IT?]

» From a scheduling perspective: Yes! (new fun problems)

» From an adjoint perspective: Yes!
With a memory of size O(M):
> Store All can execute a graph of size O(M) in time O(M);
» Revolve can execute a graph of size O(eM) in time O(MeM)!
» H-Revolve inproves performance by a factor of magnitude.

[IS IT WORTH IT?]

» From a scheduling perspective: Yes! (new fun problems)

» From an adjoint perspective: Yes!
With a memory of size O(M):
> Store All can execute a graph of size O(M) in time O(M);
» Revolve can execute a graph of size O(eM) in time O(MeM)!
» H-Revolve inproves performance by a factor of magnitude.

» Machine Learning perspective: deeper networks!

[IS IT WORTH IT?]

Aradical new neural

) network design could
> From a scheduling persg gvercome big bblems)

challengesin Al

=

» From an adjoint persped _ A
With a memory of size (@ reesssiccnmesinnean
P Store All can execute|: st ocenteriz o1 e O(M);
» Revolve can execute 3 e O(MeM)!
» H-Revolve inproves p¢ n e

inal gnitude.

An Al researcher at the University of Toronto, he wanted to build a
deep-learning model that would predict a patient’s health over time.
But data from medical records is kind of messy: throughout your lfe,
» M achine Learning p ersp k£ you might vsitthe docto
generating a smattering of measurements at arbitrary intervals. A
traditional neural network struggles to handle this, Its design requires

fferent times for different reasons,

it to learn from data with clear stages of observation. Thus it is a

Thanks

	Introduction
	Problem
	Rel. work

	Going further

