Rethinking Deep Learning: Architectures and Algorithms

George A. Constantinides

Circuits and Systems Group, Imperial College London

April 5, 2019

Outline

- The supervised learning problem
- Good functions for inference
- Typed graphs and hardware accelerators
- Binarised NNs are functionally complete
- Generalisation: Lipschitz topologies, coding, functions
- Bridging Boolean networks and DNNs: LUTNet
- Some open questions

Rethinking Deep Learning

Problem Definition

Consider a class of functions f(w; x).

- w is the parameter (choose once, at training time)
- x is the activation (changes for each inference)

Definition (Supervised Training [Sch16])

$$\operatorname*{argmin}_{w \in \mathcal{W}} \mathbb{E}_{(x,y) \in (\mathcal{X}, \mathcal{Y})} \{ \ell(f(w; x), y) \}$$

- \bullet distribution of $(\mathcal{X},\mathcal{Y})$ only accessible through sampling
- $\bullet \ \ell$ of practical interest may be difficult to optimise

So:

$$w^* = \underset{w \in \mathcal{W}}{\operatorname{argmin}} \sum_{i=1}^n \ell'(f(w; x_i), y_i)$$

Good Inference Functions

What class of functions f(w; x) to use?

A Recipe for Good Inference Functions

- Sufficiently general / expressive
- Cheap to compute
- \bullet Generalise well: once w^* is selected, $f(w^*;x)$ should also tend to perform well over the data x encountered 'in the wild'
- Easy to learn: the process of selecting w^* such that $f(w^*; x)$ performs well over the training data (x_i, y_i) should be efficient

Strang [Str18] argues for continuity as key to generalisation.

Typed Graphs: Neural Networks or Circuits?

Acknowledgements to Erwei Wang

Binarised Neural Networks (BNNs)

How to make the hardware simpler? BNNs take an extreme approach to quantization $[CHS^+16]$.

A classical node function is $\mathbb{R}^{n+1} \times \mathbb{R}^n \to \mathbb{R}$ given by $(w, c; x) \mapsto \sigma(w^T x + c)$ where $\sigma(\cdot)$ is a sigmoid.

BNN Node Function

$$f:\{-1,+1\}^n\times\mathbb{Z}\times\{-1,+1\}^n\to\{-1,+1\}$$
 given by

$$(w,c;x)\mapsto \begin{cases} +1 \text{ if } w^Tx\geq c,\\ -1 \text{ otherwise.} \end{cases}$$

General perception: quantisation to 8-bit or 4-bit is OK, below that is problematic, except in special cases.

BNNs are Complete

Theorem

Binarised Neural Networks are functionally complete.

Proof.

Let $\phi : \mathbb{B} \to \{-1, +1\}$ be defined by $\bot \mapsto -1$, $\top \mapsto +1$. The following hold:

$$\begin{split} & x \wedge y \Leftrightarrow \phi^{-1} \circ \operatorname{BNN}\left((+1,+1),+2;\left(\phi(x),\phi(y)\right)\right) \\ & x \lor y \Leftrightarrow \phi^{-1} \circ \operatorname{BNN}\left((+1,+1),0;\left(\phi(x),\phi(y)\right)\right) \\ & \neg x \Leftrightarrow \phi^{-1} \circ \operatorname{BNN}\left((-1),+1;\phi(x)\right) \end{split}$$

Completeness then follows from completeness of $\{\land, \lor, \neg, \bot, \top\}$.

Corollary

Accuracy-optimal network topology depends on finite-precision datatype.

Related Observations in the Deep Learning Literature

- Venkatesh *et al.*: "The data shows that low-precision networks provide better accuracy as the network depth increases." [VNM17].
- Su *et al.*: "we found that in MNIST classification, 1-bit parameter networks require more operations and connections to compensate the accuracy loss" [Su18].

Rethinking Topologies for Discrete Inference

Definition

Suppose $f: X \to Y$, where X is equipped with a metric d and Y is equipped with a metric e. The function f is k-Lipschitz if for all $a, b \in X$, $e(f(a), f(b)) \leq kd(a, b)$.

Which networks give rise to k-Lipschitz functions for small k?

Consider as function ADD: $\mathbb{B}^{2n+1} \to \mathbb{B}^{n+1}$. Using $\varphi : \mathbb{B} \to \{0, 1\}$ given by $\bot \mapsto 0$, $\top \mapsto 1$, consider an *encoding* of the inputs:

$$w_k(x) = \sum_{i=0}^{k-1} \varphi(x_i) 2^i.$$

$$d(\cdot) = |w_n(a) - w_n(a')| + |w_n(b) - w_n(b')| + |\varphi(c) - \varphi(c')|$$

$$e(\cdot) = |w_{n+1}(c, s_{n-1}, \dots, s_0) - w_{n+1}(c', s'_{n-1}, \dots, s_0)|$$

ADD: $(\mathbb{B}^{2n+1}, d) \to (\mathbb{B}^{n+1}, e)$ is 1-Lipschitz.

Now consider the function NEWFUNC we would get by replacing the FA blocks.

ADD: $(\mathbb{B}^{2n+1}, d) \to (\mathbb{B}^{n+1}, e)$ is 1-Lipschitz.

Now consider the function NEWFUNC we would get by replacing the FA blocks.

Practical Progress

LUTNet: Deep Learning for FPGAs

Intel Stratix IV (courtesy of Intel)

LUTnet: The Idea

A first look at bridging DNNs and Boolean networks.

BNNs: A reminder

$$y = \sigma\left(\sum_{n=1}^{N} w_n x_n\right)$$

LUTs are used for scalar products - Boolean XNOR.

The LUTNet Approach

- Replace scalar products $(w; x) \mapsto w^T x$ by $\mathbb{B}^{2^K} \times \{-1, +1\}^K \to \{-1, +1\}$ Strict generalisation: embrace nonlinearity and extra inputs.
- Retrain with SGD: learn new Boolean functions of nodes.
- Prune network area halved [WDCC19].

Conclusions

- Designing discrete classifiers (*all practical classifiers*) by quantising continuous classifiers can be suboptimal
- Extreme quantisation can recover any finite classifier
- ... so topology and datatypes are intimately connected.
- Generalisation and continuity are closely linked.
- Topology, metrics / coding and leaf functionality together impact continuity of function.
- LUTNet: It is possible to learn arbitrary Boolean node functions for a predefined coding and with limited topological changes, resulting in considerable area savings.

Conjectures and Open Questions

Conjecture

Future efficient neural network topologies will be driven by both the topology of the data and by the nature of the finite representation of the activations.

Open Question

What input and output codings are commensurate with the properties of good inference functions, and how do they depend on the probability measure?

Open Question

Given metrics, a Lipschitz constant k and a network topology, how to characterise functions implemented only from functional decouplings?

References

- M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1, https://arxiv.org/abs/1602.02830, 2016.
- M. Ghasemzadeh, M. Samragh, and F. Koushanfar, ReBNet: Residual Binarized Neural Network, Proc. IEEE International Symposium on Field-programmable Custom Computing Machines, 2018.
- K. Scheinberg, Evolution of randomness in optimization methods for supervised machine learning, SIAG/OPT Views and News **24** (2016), no. 1, 1–7.
- G. Strang, The functions of deep learning, SIAM News 51 (2018), no. 10.
- J. Su, Artificial neural networks acceleration on field-programmable gate arrays considering model redundancy, Tech. report, Imperial College London, 2018, http://hdl.handle.net/10044/1/66261.
- G. Venkatesh, E. Nurvitadhi, and D. Marr, Accelerating deep convolutional neural networks using low precision and sparsity, Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2017.
- E. Wang, J. Davis, P.Y.K. Cheung, and G.A. Constantinides, LUTNet: Rethinking inference in FPGA soft logic, Proc. IEEE International Symposium on Field-programmable Custom Computing Machines, 2019.