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Problem Definition

Consider a class of functions f(w;x).

w is the parameter (choose once, at training time)

x is the activation (changes for each inference)

Definition (Supervised Training [Sch16])

argmin
w∈W

E(x,y)∈(X ,Y){`(f(w;x), y)}

distribution of (X ,Y) only accessible through sampling

` of practical interest may be difficult to optimise

So:

w∗ = argmin
w∈W

n∑
i=1

`′(f(w;xi), yi)
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Good Inference Functions

What class of functions f(w;x) to use?

A Recipe for Good Inference Functions

Sufficiently general / expressive

Cheap to compute

Generalise well: once w∗ is selected, f(w∗;x) should also tend
to perform well over the data x encountered ‘in the wild’

Easy to learn: the process of selecting w∗ such that f(w∗;x)
performs well over the training data (xi, yi) should be efficient

Strang [Str18] argues for continuity as key to generalisation.
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Typed Graphs: Neural Networks or Circuits?

Acknowledgements to Erwei Wang
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Binarised Neural Networks (BNNs)

How to make the hardware simpler? BNNs take an extreme
approach to quantization [CHS+16].

A classical node function is Rn+1 × Rn → R given by
(w, c;x) 7→ σ(wTx+ c) where σ(·) is a sigmoid.

BNN Node Function

f : {−1,+1}n × Z× {−1,+1}n → {−1,+1} given by

(w, c;x) 7→

{
+1 if wTx ≥ c,
−1 otherwise.

General perception: quantisation to 8-bit or 4-bit is OK, below
that is problematic, except in special cases.
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BNNs are Complete

Theorem

Binarised Neural Networks are functionally complete.

Proof.

Let φ : B→ {−1,+1} be defined by ⊥ 7→ −1, > 7→ +1. The
following hold:

x ∧ y ⇔ φ−1 ◦ bnn ((+1,+1),+2; (φ(x), φ(y)))

x ∨ y ⇔ φ−1 ◦ bnn ((+1,+1), 0; (φ(x), φ(y)))

¬x⇔ φ−1 ◦ bnn ((−1),+1;φ(x))

Completeness then follows from completeness of {∧,∨,¬,⊥,>}.
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But...

Corollary

Accuracy-optimal network topology depends on finite-precision
datatype.

Related Observations in the Deep Learning Literature

Venkatesh et al.: “The data shows that low-precision networks
provide better accuracy as the network depth
increases.” [VNM17].

Su et al.: “we found that in MNIST classification, 1-bit
parameter networks require more operations and connections
to compensate the accuracy loss” [Su18].
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Rethinking Topologies for Discrete Inference

Definition

Suppose f : X → Y , where X is equipped with a metric d and Y
is equipped with a metric e. The function f is k-Lipschitz if for all
a, b ∈ X, e(f(a), f(b)) ≤ kd(a, b).

Which networks give rise to k-Lipschitz functions for small k?

a0 b0

FA c0

s0

a1 b1

FA c1

s1

an−1 bn−1

FA cn−1

s1

an−2 bn−2

FA cn−2

s2cn

10 / 19



Rethinking Deep Learning
Practical Progress

a0 b0

FA c0

s0

a1 b1

FA c1

s1

an−1 bn−1

FA cn−1

s1

an−2 bn−2

FA cn−2

s2cn

Consider as function add : B2n+1 → Bn+1.
Using ϕ : B→ {0, 1} given by ⊥ 7→ 0, > 7→ 1, consider an
encoding of the inputs:

wk(x) =

k−1∑
i=0

ϕ(xi)2
i.

d(·) =
∣∣wn(a)− wn(a

′)
∣∣+ ∣∣wn(b)− wn(b

′)
∣∣+ ∣∣ϕ(c)− ϕ(c′)∣∣

e(·) =
∣∣wn+1(c, sn−1, . . . , s0)− wn+1(c

′, s′n−1, . . . , s0)
∣∣
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add : (B2n+1, d)→ (Bn+1, e) is 1-Lipschitz.

Now consider the function newfunc we would get by replacing
the FA blocks.

ai bi

ci

si

ci+1
newfunc : (B2n+1, d)→ (Bn+1, e) is not
k-Lipschitz for any k < 2n.

topology

metrics / coding leaf functions
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functional decouplings
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Practical Progress
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LUTNet: Deep Learning for FPGAs

Intel Stratix IV (courtesy of Intel)
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LUTnet: The Idea

A first look at bridging DNNs and Boolean networks.

BNNs: A reminder

y = σ

(
N∑

n=1

wnxn

)
LUTs are used for scalar products – Boolean XNOR.

The LUTNet Approach

Replace scalar products (w;x) 7→ wTx by

B2K × {−1,+1}K → {−1,+1}
Strict generalisation: embrace nonlinearity and extra inputs.

Retrain with SGD: learn new Boolean functions of nodes.

Prune network – area halved [WDCC19].
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Conclusions

Designing discrete classifiers (all practical classifiers) by
quantising continuous classifiers can be suboptimal

Extreme quantisation can recover any finite classifier

... so topology and datatypes are intimately connected.

Generalisation and continuity are closely linked.

Topology, metrics / coding and leaf functionality together
impact continuity of function.

LUTNet: It is possible to learn arbitrary Boolean node
functions for a predefined coding and with limited topological
changes, resulting in considerable area savings.
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Conjectures and Open Questions

Conjecture

Future efficient neural network topologies will be driven by both
the topology of the data and by the nature of the finite
representation of the activations.

Open Question

What input and output codings are commensurate with the
properties of good inference functions, and how do they depend on
the probability measure?

Open Question

Given metrics, a Lipschitz constant k and a network topology, how
to characterise functions implemented only from functional
decouplings?
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