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Hardware Support for Multiprecision Computation
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• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017: 

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision; 

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU): quantizes 32-bit FP computations 
into 8-bit integer arithmetic

• Future exascale supercomputers: (~2021) Expected extensive support for 
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:



Performance of LU factorization on an NVIDIA V100 GPU

2[Haidar, Tomov, Dongarra, Higham, 2018]



Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0: maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via 𝑑𝑖 = 𝑈−1(𝐿−1𝑟𝑖)

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

3

Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏
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(in precision 𝑢)

(in precision 𝑢2)

(in precision 𝑢)

(in precision 𝑢)
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"Fixed-Precision"

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

(in precision 𝑢)

[Jankowski and Woźniakowski, 1977], [Skeel, 1980], [Higham, 1991]
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⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

• Enables new types of IR: (half, single, double), (half, single, quad), 
(half, double, quad), etc. 



Key Analysis Innovations I

Typical bounds used in analysis: 𝐴(𝑥 −  𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 −  𝑥𝑖 ∞

Obtain tighter upper bounds:
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Key Analysis Innovations I
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(𝐴 = 𝑈Σ𝑉𝑇)𝑥 −  𝑥𝑖 = 𝑉Σ−1𝑈𝑇𝑟𝑖 =  

𝑗=1

𝑛
𝑢𝑗

𝑇𝑟𝑖 𝑣𝑗

𝜎𝑗

𝑟𝑖 2 = 𝜇𝑖
(2)

𝐴 2 𝑥 −  𝑥𝑖 2
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2  
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2
=
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2

where 𝑃𝑘 = 𝑈𝑘𝑈𝑘
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• In that case, 𝑥 −  𝑥𝑖 is not "typical", i.e., it contains large components in right singular 
vectors corresponding to small singular values of 𝐴
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Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1
∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞
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• Three precisions:

• 𝑢𝑓: factorization precision
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• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 2𝒖𝒔 min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is sufficiently less than 1, then the forward error is reduced on the 𝑖th
iteration by a factor ≈ 𝜙𝑖 until an iterate  𝑥𝑖 is produced for which

𝑥 −  𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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𝑥 ∞
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Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if 

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is sufficiently less than 1, then the residual is reduced on the 𝑖th iteration 
by a factor ≈ 𝜙𝑖 until an iterate  𝑥𝑖 is produced for which

𝑏 − 𝐴 𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞  𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴. 

Theorem [C. and Higham, SISC 40(2), 2018]
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IR3: Summary

12

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16
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IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error
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LP fact. 

LP fact. 

LP fact. 



Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8
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IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16, Quad ≈ 10−34

13

Standard (LU-based) IR in three precisions (𝑢𝑠 = 𝑢𝑓)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower 
precision factorization w/no loss of accuracy! 

New

New

New

Trad.

Fixed

LP fact. 

LP fact. 

LP fact. 



Standard (LU-based) IR with    𝑢𝑓: single,  𝑢: double,   𝑢𝑟: double

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

14

100



Standard (LU-based) IR with    𝑢𝑓: single,  𝑢: double,   𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9
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Standard (LU-based) IR with    𝑢𝑓: double,  𝑢: double,   𝑢𝑟: quad

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9

14

100



GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if  𝐿 and  𝑈 are computed LU factors of 𝐴 in 

precision 𝑢𝑓, then 

𝜅∞
 𝑈−1 𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝑢𝑓,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.
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GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to  𝑈−1  𝐿−1𝐴𝑑𝑖 =  𝑈−1  𝐿−1𝑟𝑖

 𝐴  𝑟𝑖
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𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖
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 𝐴  𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on  𝐴𝑑𝑖 =  𝑟𝑖

𝒖𝒔 = 𝒖
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Standard (LU-based) IR with    𝑢𝑓: single,  𝑢: double,   𝑢𝑟: quad
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b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞
 𝐴 ≈ 2e4
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GMRES-IR: Summary

Benefits of GMRES-IR:
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Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8
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LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ If 𝜅∞ 𝐴 ≤ 1012, can use lower precision factorization w/no loss of accuracy! 
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝑢𝑓 𝑢 𝑢𝑟 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3
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Comments and Caveats

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps
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• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it 
can be a poor preconditioner

• e.g., if  𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate 
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling, using additional 
preconditioner

• Depending on conditioning of A, applying  𝐴 to a vector must be done accurately 
(precision 𝑢2) in each GMRES iteration 

• Why GMRES? 

• Theoretical purposes: existing analysis and proof of backward stability [Paige, 
Rozložník, Strakoš, 2006]

• In practice, use any solver you want! 
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Extension to Least Squares Problems

• Want to solve
min

𝑥
𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛
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𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 × 𝑚 orthogonal matrix and 𝑈 is upper triangular.
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where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 × 𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement 
often needed to improve accuracy and stability
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• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚 + 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Least Squares Iterative Refinement

20
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 𝐴 𝑥 =  𝑏
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 𝐴 𝑥 =  𝑏

 𝑟𝑖 =  𝑏 −  𝐴 𝑥𝑖

 𝐴𝑑𝑖 =  𝑟𝑖

 𝑥𝑖+1 =  𝑥𝑖 + 𝑑𝑖
Results for 3-precision 
IR for linear systems 
also applies to least 
squares problems



Least Squares Iterative Refinement

• To apply the existing analysis, we must consider:

1. How is the condition number of  𝐴 related to the condition number of 
𝐴?

2. What are bounds on the forward and backward error in solving the 
correction equation  𝐴𝑑𝑖 =  𝑟𝑖?

• We now have a QR factorization rather than an LU factorization, 
and the augmented system has structure which can be exploited

21



Augmented System Condition Number
• Result of Björck (1967):

The matrix 

 𝐴𝛼 =
𝛼𝐼 𝐴
𝐴𝑇 0

has condition number bounded by 

2𝜅2 𝐴 ≤ min
𝛼

𝜅2
 𝐴𝛼 ≤ 2𝜅2 𝐴 , max

𝛼
𝜅2

 𝐴𝛼 > 𝜅2 𝐴 2

and min
𝛼

𝜅2
 𝐴𝛼 is attained for 𝛼 = 2−

1

2 𝜎𝑚𝑖𝑛(𝐴).
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• Result of Björck (1967):

The matrix 

 𝐴𝛼 =
𝛼𝐼 𝐴
𝐴𝑇 0
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2𝜅2 𝐴 ≤ min
𝛼
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 𝐴𝛼 ≤ 2𝜅2 𝐴 , max

𝛼
𝜅2

 𝐴𝛼 > 𝜅2 𝐴 2

and min
𝛼

𝜅2
 𝐴𝛼 is attained for 𝛼 = 2−

1

2 𝜎𝑚𝑖𝑛(𝐴).

• Scaling does not change the solution to least squares problem; further, if 𝛼
is a power of the machine base, it doesn't affect rounding errors

⇒ Safe to assume that 𝜅2(  𝐴) is the same order of magnitude as 𝜅2(𝐴)
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LS-IR in 3 precisions

Compute QR factorization 𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

23

precision 𝑢𝑓
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23

precision 𝑢𝑓

precision 𝑢

precision 𝑢𝑟

precision 𝑢

precision 𝑢



Returning to IR3 Analysis...
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• Future machines will support a range of precisions: quarter, half, single, 
double, quad

• New, non-IEEE compliant floating point formats will appear in 
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision) 

• Lower-precision arithmetic is faster and more energy efficient, but the 
potential for its use depends heavily on the particular problem and 
algorithm

• As numerical analysts, we must determine when and where we can exploit 
lower-precision hardware to improve performance
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