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Overview

• Will draw strong connection between techniques for efficiently
factoring matrices and for sampling structured subsets of
a ground set.

• The basic bridge: forming a Schur complement equates to
forming a representation of a conditional distribution.

• One can import HPC techniques, such as DAG-scheduled
dense and sparse-direct blocked algorithms, from
factorizations to Determinantal Point Processes
[Macchi-1975, Burton/Pemantle-1993,
Benjamini/Lyons/Peres/Schramm-2001].

• Implementations are available in the permissively licensed,
header-only C++14 package Catamari [P-2018] available at
hodgestar.com/catamari.
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Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as ‘factoring’ a class of
matrices such that the j ’th pivot is the probability of including the
j ’th item.

Flip a coin weighted by the pivot to determine inclusion:

• If the item is kept, proceed as in an LU/LDL factorization.

• If the item is dropped, take the pivot’s complement in [0, 1]
and negate – i.e., subtract one – and proceed as normal.

The likelihood of the sample is thus the product of the absolute
value of the diagonal of the ‘factorization’.

Essentially all high-performance techniques for dense and
sparse-direct factorizations therefore carry over.
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What is meant by a ’structured subset’?

The basic mechanism of a (finite) Point Process is to define a
probability distribution over the power set of a ground set
[n] = [0, ..., n − 1].

A determinantal point process sets the probability of a subset
J ⊆ [n] being in the sample equal to the J-minor of a fixed
marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive
semi-definite – with spectrum in [0, 1], but Hermiticity does not
hold in some important cases.

Inadmissible combinations of members of the set can therefore be
encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.
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Aztec diamond: d = 5
$ ./ aztec_diamond --diamond_size =5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

5 / 71



Aztec diamond: d = 5
$ ./ aztec_diamond --diamond_size =5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

6 / 71



Aztec diamond: d = 5
$ ./ aztec_diamond --diamond_size =5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

7 / 71



Aztec diamond: d = 5
$ ./ aztec_diamond --diamond_size =5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

8 / 71



Aztec diamond: d = 5
$ ./ aztec_diamond --diamond_size =5

Complex non-Hermitian kernel; Sample likelihoods: exp(−10.3972)

9 / 71



Aztec diamond: d = 10
$ ./ aztec_diamond --diamond_size =10

Complex non-Hermitian kernel; Sample likelihoods: exp(−38.1231)
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Aztec diamond: d = 40
$ ./ aztec_diamond --diamond_size =40

Complex non-Hermitian kernel; Sample likelihoods: exp(−568.381)
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Aztec diamond: d = 80
$ ./ aztec_diamond --diamond_size =80

Complex non-Hermitian kernel; Sample likelihoods: exp(−2245.8)
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Uniform Spanning Tree in Z2 (d = 10)
$ ./ uniform_spanning_tree --x_size =10 --y_size =10

Real-symm’ elementary kernel; Sample likelihoods: exp(−98.448)
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Uniform Spanning Tree in Z2 (d = 40)
$ ./ uniform_spanning_tree --x_size =40 --y_size =40

Real-symm’ elementary kernel; Sample likelihoods: exp(−1794.24)
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Uniform Spanning Tree in Z2 (d = 100)
$ ./ uniform_spanning_tree --x_size =100 --y_size =100

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 484.5)
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UST for hexagonal tiling of plane (d = 10)

$ . / u n i f o rm s p a n n i n g t r e e −−x s i z e =10 −−y s i z e =10 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−299.101)
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UST for hexagonal tiling of plane (d = 60)

$ . / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

45 / 71



UST for hexagonal tiling of plane (d = 60)

$ . / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

46 / 71



UST for hexagonal tiling of plane (d = 60)

$ . / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

47 / 71



UST for hexagonal tiling of plane (d = 60)

$ . / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

48 / 71



UST for hexagonal tiling of plane (d = 60)

$ . / u n i f o rm s p a n n i n g t r e e −−x s i z e =60 −−y s i z e =60 −−hexagona l=t r u e

Real-symm’ elementary kernel; Sample likelihoods: exp(−11, 486.8)

49 / 71



Hermitian Determinantal Point Processes

Definition 1. A (Hermitian) marginal kernel matrix is a (real or complex)
Hermitian matrix whose eigenvalues live in [0, 1].

Definition 2. A (finite, Hermitian) Determinantal Point Process (DPP) is a
random variable Y over the power set of Y = {0, ..., n − 1} = [n] generated by
a n × n (Hermitian) marginal kernel matrix K via the rule

PK [Y ⊆ Y] = det(KY ),

where KY is the |Y | × |Y | submatrix of K formed by restricting to the rows
and columns in the index set Y .

Definition 3. A (Hermitian) DPP is called elementary if the eigenvalues of its

marginal kernel matrix all lie in {0, 1}.
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Non-Hermitian DPP kernels

Definition 4. A (finite) Determinantal Point Process is a random
variable Y over the power set of Y = [n] generated by an admissible
K ∈ Cn×n that is consistent with the rule:

PK [Y ⊆ Y] = det(KY ).

Proposition 1 (Brunel-2018). A matrix K ∈ Cn×n is admissible as a
DPP marginal kernel iff

(−1)|J|det(K − IJ) ≥ 0, ∀J ⊆ [n].
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Equivalence classes of DPP kernels

Proposition 2 (P-2019). The equivalence class of a structurally
symmetric DPP kernel K ∈ Cn×n is its orbit under the group of diagonal
similarity transformations, i.e.,

{D−1KD : D = diag(d), d ∈ (Cx)n}.

For complex Hermitian and real symmetric K , the entries of D must
respectively lie in U(1) and O(1).

Proposition 3 (P-2019). The equivalence class of a structurally
nonsymmetric DPP kernel K strictly contains the its orbit under the
group of diagonal similarity transformations.

Proof.
If structural symmetry is broken at a 2× 2 submatrix, we need only
observe that:

DPP(

(
α 0
β γ

)
) ≡ DPP(

(
α 0
0 γ

)
),

but neither is contained in the orbit of the other.
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Conditioning and Schur complements

Proposition 4. Given disjoint subsets A,B ⊂ Y,

P[B ⊆ Y|A ⊆ Y] = det(KB − KB,AK
−1
A KA,B).

Proof.

det(KA∪B) = det(KA)det(KB − KB,AK
−1
A KA,B)

and

P[B ⊆ Y|A ⊆ Y] =
det(KA∪B)

det(KA)
.
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Conditioning and Schur complements
Proposition 5. Given disjoint subsets A,B ⊂ Y,

P[B ⊆ Y|A ⊆ Yc ] = det(KB − KB,A(KA − I )−1KA,B).

Proof.
The claim follows from repeated application of the case where A is a single
element, a:

P[B ⊆ Y|a /∈ Y] =
P[a /∈ Y|B ⊆ Y]P[B ⊆ Y]

P[a /∈ Y]

=
(1− P[a ∈ Y|B ⊆ Y])P[B ⊆ Y]

1− P[a ∈ Y]

=
P[B ⊆ Y]− P[a ∈ Y ∧ B ⊆ Y]

1− P[a ∈ Y]

=
det(KB)− det(Ka∪B)

1− Ka

= det(KB)(1− Ka,B
KB
−1

Ka − 1
KB,a)

= det(KB − KB,a(Ka − 1)−1Ka,B).
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Conditioning and Schur complements
Proposition 5. Given disjoint subsets A,B ⊂ Y,

P[B ⊆ Y|A ⊆ Yc ] = det(KB − KB,A(KA − I )−1KA,B).

Proof.
The claim follows from repeated application of the case where A is a single
element, a:

P[B ⊆ Y|a /∈ Y] =
P[a /∈ Y|B ⊆ Y]P[B ⊆ Y]

P[a /∈ Y]

=
(1− P[a ∈ Y|B ⊆ Y])P[B ⊆ Y]
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Traditional Hermitian DPP sampling

Lemma 5 (Hough et al.-2006). Given any Y ∼ DPP(K), where K has
spectral decomposition QΛQ∗, sampling from Y is equivalent to sampling from
the random elementary DPP with kernel P(QZ), where P(U) ≡ UU∗ and QZ

consists of the columns of Q with indices from Z ∼ DPP(Λ).

“Alg. 1 runs in time O(Nk3), where k is the number of eigenvectors selected
[...] the initial eigendecomposition of [K ] is often the computational
bottleneck, requiring O(N3) time. Modern multi-core machines can compute
eigendecompositions up to N ≈ 1, 000 at interactive speeds of a few seconds,
or larger problems up to N ≈ 10, 000 in around ten minutes.”
[Kulesza/Taskar-2012]

[Gillenwater-2014] reduced the factored elementary DPP sampling down to

cubic complexity via what is equivalent to diagonally-pivoted Cholesky.1

1[Gillenwater-2014] Approximate inference for determinantal point processes
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Traditional Hermitian DPP sampling
Recently, authors are noticing connections to LDLH factorizations.23

In [Launay et al.-2018], timings are provided for the spectrally-preprocessed and
“sequentially thinned” algorithm for elementary real symmetric kernels of rank
20 and varying size (left) and varying rank and size 5000 (right):

This talk decreases runtimes by 100-1000x, for more general kernels, by

importing dense factorization techniques. We then extend to non-Hermitian

and sparse-direct analogues.
2[Chen et al.-2017] Fast Greedy MAP inference for Det’ Point Processes
3[Launay et al.-2018] Exact sampling of determinantal point processes

without eigendecomposition. arxiv.org/abs/1802.08429v3
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Unblocked DPP sampling factorization
sample = []

for j in range(n):

J2 = [j+1:n]

if Bernoulli(K(j,j)):

sample.append(j)

else:

K(j,j) -= 1

K(J2 ,j) /= K(j,j)

K(J2 ,J2) -= K(J2 ,j) * K(j,J2)

return sample

This is a small tweak of unblocked, unpivoted LU factorization – readily
specializable to LDLH and LDLT for Hermitian and complex symmetric
matrices.

The majority of the work is in rank-1 updates. And the standard optimizations
apply (e.g., blocking and sparse-direct factorization)!

The likelihood of the sample is equal to the product of the absolute value of

the diagonal of the result.
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Blocked DPP sampling factorization

sample = []

J1_beg = 0

while J1_beg < n:

J1_end = min(n, J1_beg+blocksize)

J1 = [J1_beg:J1_end ]; J2 = [J1_end:n]

subsample , K(J1 ,J1) = unblocked_dpp(K(J1 ,J1))

sample.append(subsample + J1_beg)

K(J2 ,J1) /= triu(K(J1 ,J1))

K(J1 ,J2) \= unit_tril(K(J1 ,J1))

K(J2 ,J2) -= K(J2 ,J1) * K(J1 ,J2)

J1_beg = J1_end

return sample

OpenMP 4.0 tasks – say, with tile sizes of 128 – can be readily
used to provide shared-memory, DAG-scheduled parallelism
[Agullo/Langou/Luszczek-2010, Yarkhan et al.-2011, Chan et
al.-2007].
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Unblocked, greedy, MAP DPP sampling

sample = []

for j in range(n):

J2 = [j+1:n]

if K(j,j) >= 0.5:

sample.append(j)

else:

K(j,j) -= 1

K(J2 ,j) /= K(j,j)

K(J2 ,J2) -= K(J2 ,j) * K(j,J2)

return sample

Greedy MAP sampling is a trivial tweak of the standard sampler, and the

blocked extension is essentially identical.
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Full-rank real symmetric DPP on i9-7960x (16-core)

Dense, real LDLH-based DPP sampler [P-2019].

$ OMP_NUM_THREADS =16 ./ dense_dpp
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Aztec diamond DPP on i9-7960x (16-core)

Dense, complex LU-based DPP sampler [P-2019].*
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*Generated from the Kenyon formula over the Kasteleyn matrix [Chhita et al.-2015].
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Z2 UST DPP on i9-7960x (16-core)

Dense, real LDLH-based DPP sampler [P-2019].*
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*Over the Gramian of the star space basis [Lyons/Peres-2016].
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Hexagonal UST DPP on i9-7960x (16-core)

Dense, real LDLH-based DPP sampler [P-2019].*
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*Over the Gramian of the star space basis [Lyons/Peres-2016].
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Low precision corrupting sampling

$ ./ aztec_diamond --diamond_size =80

Double-precision sample
Single-precision sample (visibly
erroneous)
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Basic questions for DPP factorizations

Given the close connection between DPP sampling and dense
factorization:

• One should be able to probabilistically generalize element
growth and numerical stability bounds.

• Use maximum-entropy diagonal pivot selection? Minimizes
worst case pivot.

• High-performance techniques for backpropagating through
Cholesky are now known [Murray-2016].4 Do these blocked
algorithms extend to DPPs?

4[Murray-2016] Differentiation of the Cholesky decomposition.
arxiv.org/abs/1602.07527
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Sparse-direct DPP factorizations
We have so-far discussed analogues of dense factorizations, and
sparse-direct analogues are a natural extension.

Catamari implements templated, real and complex, Cholesky / LDLH /
LDLT – switching between DAG-scheduled, right-looking supernodal
and up-looking simplicial based upon arithmetic intensity
[Chen/Davis/Hager/Rajamanickam-2008].

A variant of the sparse-direct LDLH is provided for sparse DPPs.

(Unpivoted) sparse-direct LU and LDLT DPP sampling is a

straight-forward extension.
66 / 71
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Complex sparse LDLT on i9-7960x (16-core)

3D Helmholtz w/ PML and trilinear,
hexahedral elements

$ OMP_NUM_THREADS =16 ./ helmholtz_3d_pml
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(MAP) Sampling from 2D −σ∆

$ ./ dpp_shifted_2d_negative_laplacian \

--x_size =200 --y_size =200 --scale =0.72

Log-likelihood: -27472.2
Sample time: 0.0107 seconds

Log-likelihood: -26058
Sample time: 0.0112 seconds
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(MAP) Sampling from 2D −σ∆

$ ./ dpp_shifted_2d_negative_laplacian \

--x_size =200 --y_size =200 --scale =0.75

Log-likelihood: -27612.6
Sample time: 0.0124 seconds

Log-likelihood: -26009
Sample time: 0.0114 seconds
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(MAP) Sampling from 2D −σ∆

$ ./ dpp_shifted_2d_negative_laplacian \

--x_size =200 --y_size =200 --scale =0.85

Log-likelihood: -27581.7
Sample time: 0.0114 seconds

Log-likelihood: -25765
Sample time: 0.0118 seconds
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Closing

Availability:
Quotient is available under the Mozilla Public License 2.0 at
hodgestar.com/quotient/ and gitlab.com/hodge star/quotient.
This talk is based on version 0.2.

Catamari is available under the Mozilla Public License 2.0 at
hodgestar.com/catamari/ and gitlab.com/hodge star/catamari.
This talk is based on version 0.2.3.

These slides are available at:
hodgestar.com/catamari/April8-2019-RoyalSociety.pdf

Acknowledgements:

• Alex Kulesza and Jenny Gillenwater:
For answering my initial DPP sampling questions.
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