High-performance sampling of Determinantal Point Processes

Jack Poulson

HODGE STAR
hodgestar.com
Numerical algorithms for high-perf. computational science The Royal Society, London

April 08, 2019

Overview

- Will draw strong connection between techniques for efficiently factoring matrices and for sampling structured subsets of a ground set.
- The basic bridge: forming a Schur complement equates to forming a representation of a conditional distribution.
- One can import HPC techniques, such as DAG-scheduled dense and sparse-direct blocked algorithms, from factorizations to Determinantal Point Processes [Macchi-1975, Burton/Pemantle-1993 Benjamini/Lyons/Peres/Schramm-2001]
- Implementations are available in the permissively licensed, header-only $C++14$ package Catamari [P-2018] available at hodgestar.com/catamari

Overview

- Will draw strong connection between techniques for efficiently factoring matrices and for sampling structured subsets of a ground set.
- The basic bridge: forming a Schur complement equates to forming a representation of a conditional distribution.
- One can import HPC techniques, such as DAG-scheduled dense and sparse-direct blocked algorithms, from factorizations to Determinantal Point Processes [Macchi-1975, Burton/Pemantle-1993, Benjamini/Lyons/Peres/Schramm-2001]
- Implementations are available in the permissively licensed, header-only C ++14 package Catamari [P-2018] available at hodgestar.com/catamari.

Overview

- Will draw strong connection between techniques for efficiently factoring matrices and for sampling structured subsets of a ground set.
- The basic bridge: forming a Schur complement equates to forming a representation of a conditional distribution.
- One can import HPC techniques, such as DAG-scheduled dense and sparse-direct blocked algorithms, from factorizations to Determinantal Point Processes
[Macchi-1975, Burton/Pemantle-1993, Benjamini/Lyons/Peres/Schramm-2001].
- Implementations are available in the permissively licensed, header-only C ++14 package Catamari [P-2018] available at hodgestar.com/catamari

Overview

- Will draw strong connection between techniques for efficiently factoring matrices and for sampling structured subsets of a ground set.
- The basic bridge: forming a Schur complement equates to forming a representation of a conditional distribution.
- One can import HPC techniques, such as DAG-scheduled dense and sparse-direct blocked algorithms, from factorizations to Determinantal Point Processes
[Macchi-1975, Burton/Pemantle-1993,
Benjamini/Lyons/Peres/Schramm-2001].
- Implementations are available in the permissively licensed, header-only $\mathrm{C}++14$ package Catamari [P-2018] available at hodgestar.com/catamari.

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as 'factoring' a class of matrices such that the j 'th pivot is the probability of including the j 'th item.

```
Flip a coin weighted by the pivot to determine inclusion:
    - If the item is kept, proceed as in an LU/LDL factorization.
    - If the item is dronned, take the nivot's complement in [0, 1]
    and negate - i.e., subtract one - and proceed as normal.
The likelihood of the sample is thus the product of the absolute
value of the diagonal of the 'factorization'
Essentially all high-performance techniques for dense and
sparse-direct factorizations therefore carry over.
```


Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as 'factoring' a class of matrices such that the j 'th pivot is the probability of including the j 'th item.

Flip a coin weighted by the pivot to determine inclusion:

- If the item is kept, proceed as in an $L U / L D L$ factorization.
- If the item is dropped, take the pivot's complement in $[0,1]$ and negate - i.e., subtract one - and proceed as normal.
The likelihood of the sample is thus the product of the absolute value of the diagonal of the 'factorization'

Essentially all high-performance techniques for dense and sparse-direct factorizations therefore carry over.

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as 'factoring' a class of matrices such that the j 'th pivot is the probability of including the j 'th item.

Flip a coin weighted by the pivot to determine inclusion:

- If the item is kept, proceed as in an $L U / L D L$ factorization.
- If the item is dropped, take the pivot's complement in $[0,1]$ and negate - i.e., subtract one - and proceed as normal.

[^0]
Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as 'factoring' a class of matrices such that the j 'th pivot is the probability of including the j 'th item.

Flip a coin weighted by the pivot to determine inclusion:

- If the item is kept, proceed as in an $L U / L D L$ factorization.
- If the item is dropped, take the pivot's complement in $[0,1]$ and negate - i.e., subtract one - and proceed as normal.
The likelihood of the sample is thus the product of the absolute value of the diagonal of the 'factorization'.

Essentially all high-performance techniques for dense and sparse-direct factorizations therefore carry over.

Main idea: pivots as inclusion probabilities

Sampling a DPP can be reinterpreted as 'factoring' a class of matrices such that the j 'th pivot is the probability of including the j 'th item.

Flip a coin weighted by the pivot to determine inclusion:

- If the item is kept, proceed as in an $L U / L D L$ factorization.
- If the item is dropped, take the pivot's complement in $[0,1]$ and negate - i.e., subtract one - and proceed as normal.
The likelihood of the sample is thus the product of the absolute value of the diagonal of the 'factorization'.

Essentially all high-performance techniques for dense and sparse-direct factorizations therefore carry over.

What is meant by a 'structured subset'?

The basic mechanism of a (finite) Point Process is to define a probability distribution over the power set of a ground set $[n]=[0, \ldots, n-1]$.

A determinantal point process sets the probability of a subset $J \subseteq[n]$ being in the sample equal to the J-minor of a fixed marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive semi-definite - with spectrum in $[0,1]$, but Hermiticity does not hold in some important cases.

Inadmissible combinations of members of the set can therefore be encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe some Hermitian and non-Hermitian standard DPPs.

What is meant by a 'structured subset'?

The basic mechanism of a (finite) Point Process is to define a probability distribution over the power set of a ground set $[n]=[0, \ldots, n-1]$.

A determinantal point process sets the probability of a subset $J \subseteq[n]$ being in the sample equal to the J-minor of a fixed marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive semi-definite - with spectrum in $[0,1]$, but Hermiticity does not hold in some important cases.

Inadmissible combinations of members of the set can therefore be encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe some Hermitian and non-Hermitian standard DPPs.

What is meant by a 'structured subset'?

The basic mechanism of a (finite) Point Process is to define a probability distribution over the power set of a ground set $[n]=[0, \ldots, n-1]$.

A determinantal point process sets the probability of a subset $J \subseteq[n]$ being in the sample equal to the J-minor of a fixed marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive semi-definite - with spectrum in $[0,1]$, but Hermiticity does not hold in some important cases.

Inadmissible combinations of members of the set can therefore be encoded through linear dependencies in the kernel matrix. Before diving into the details, it will be instructive to describe some Hermitian and non-Hermitian standard DPPs.

What is meant by a 'structured subset'?

The basic mechanism of a (finite) Point Process is to define a probability distribution over the power set of a ground set $[n]=[0, \ldots, n-1]$.

A determinantal point process sets the probability of a subset $J \subseteq[n]$ being in the sample equal to the J-minor of a fixed marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive semi-definite - with spectrum in $[0,1]$, but Hermiticity does not hold in some important cases.

Inadmissible combinations of members of the set can therefore be encoded through linear dependencies in the kernel matrix. Before diving into the details, it will be instructive to describe some Hermitian and non-Hermitian standard DPPs.

What is meant by a 'structured subset'?

The basic mechanism of a (finite) Point Process is to define a probability distribution over the power set of a ground set $[n]=[0, \ldots, n-1]$.

A determinantal point process sets the probability of a subset $J \subseteq[n]$ being in the sample equal to the J-minor of a fixed marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive semi-definite - with spectrum in $[0,1]$, but Hermiticity does not hold in some important cases.

Inadmissible combinations of members of the set can therefore be encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe
some Hermitian and non-Hermitian standard DPPs.

What is meant by a 'structured subset'?

The basic mechanism of a (finite) Point Process is to define a probability distribution over the power set of a ground set $[n]=[0, \ldots, n-1]$.

A determinantal point process sets the probability of a subset $J \subseteq[n]$ being in the sample equal to the J-minor of a fixed marginal kernel matrix.

The kernel matrix is often assumed Hermitian positive semi-definite - with spectrum in $[0,1]$, but Hermiticity does not hold in some important cases.

Inadmissible combinations of members of the set can therefore be encoded through linear dependencies in the kernel matrix.

Before diving into the details, it will be instructive to describe some Hermitian and non-Hermitian standard DPPs.

Aztec diamond: $d=5$

\$./aztec_diamond --diamond_size=5
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-10.3972)$

Aztec diamond: $d=5$

\$./aztec_diamond --diamond_size=5
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-10.3972)$

Aztec diamond: $d=5$

\$./aztec_diamond --diamond_size=5
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-10.3972)$

Aztec diamond: $d=5$

\$./aztec_diamond --diamond_size=5
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-10.3972)$

Aztec diamond: $d=5$

\$./aztec_diamond --diamond_size=5
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-10.3972)$

Aztec diamond: $d=10$

\$./aztec_diamond --diamond_size=10
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-38.1231)$

Aztec diamond: $d=10$

\$./aztec_diamond --diamond_size=10
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-38.1231)$

Aztec diamond: $d=10$

\$./aztec_diamond --diamond_size=10
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-38.1231)$

Aztec diamond: $d=10$

\$./aztec_diamond --diamond_size=10

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-38.1231)$

Aztec diamond: $d=10$

\$./aztec_diamond --diamond_size=10
Complex non-Hermitian kernel; Sample likelihoods: $\exp (-38.1231)$

Aztec diamond: $d=40$

$$
\text { \$./aztec_diamond --diamond_size }=40
$$

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-568.381)$

Aztec diamond: $d=40$

$$
\text { \$./aztec_diamond --diamond_size }=40
$$

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-568.381)$

Aztec diamond: $d=40$

$$
\text { \$./aztec_diamond --diamond_size }=40
$$

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-568.381)$

Aztec diamond: $d=40$

$$
\text { \$./aztec_diamond --diamond_size }=40
$$

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-568.381)$

Aztec diamond: $d=40$

$$
\text { \$./aztec_diamond --diamond_size }=40
$$

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-568.381)$

Aztec diamond: $d=80$

\$./aztec_diamond --diamond_size=80

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-2245.8)$

Aztec diamond: $d=80$

$$
\text { \$./aztec_diamond --diamond_size }=80
$$

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-2245.8)$

Aztec diamond: $d=80$

\$./aztec_diamond --diamond_size=80

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-2245.8)$

Aztec diamond: $d=80$

\$./aztec_diamond --diamond_size=80

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-2245.8)$

Aztec diamond: $d=80$

\$./aztec_diamond --diamond_size=80

Complex non-Hermitian kernel; Sample likelihoods: $\exp (-2245.8)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=10)$

\$./uniform_spanning_tree --x_size=10 --y_size=10
Real-symm' elementary kernel; Sample likelihoods: $\exp (-98.448)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=10)$

\$./uniform_spanning_tree --x_size=10 --y_size=10
Real-symm' elementary kernel; Sample likelihoods: $\exp (-98.448)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=10)$

\$./uniform_spanning_tree --x_size=10 --y_size=10
Real-symm' elementary kernel; Sample likelihoods: $\exp (-98.448)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=10)$

\$./uniform_spanning_tree --x_size=10 --y_size=10
Real-symm' elementary kernel; Sample likelihoods: $\exp (-98.448)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=10)$

\$./uniform_spanning_tree --x_size=10 --y_size=10
Real-symm' elementary kernel; Sample likelihoods: $\exp (-98.448)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=40)$

\$./uniform_spanning_tree --x_size=40 --y_size=40
Real-symm' elementary kernel; Sample likelihoods: $\exp (-1794.24)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=40)$

\$./uniform_spanning_tree --x_size=40 --y_size=40
Real-symm' elementary kernel; Sample likelihoods: $\exp (-1794.24)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=40)$

\$./uniform_spanning_tree --x_size=40 --y_size=40
Real-symm' elementary kernel; Sample likelihoods: $\exp (-1794.24)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=40)$

\$./uniform_spanning_tree --x_size=40 --y_size=40

Real-symm' elementary kernel; Sample likelihoods: $\exp (-1794.24)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=40)$

\$./uniform_spanning_tree --x_size=40 --y_size=40

Real-symm' elementary kernel; Sample likelihoods: $\exp (-1794.24)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=100)$

\$./uniform_spanning_tree --x_size=100 --y_size=100
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,484.5)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=100)$

\$./uniform_spanning_tree --x_size=100 --y_size=100
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,484.5)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=100)$

\$./uniform_spanning_tree --x_size=100 --y_size=100
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,484.5)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=100)$

\$./uniform_spanning_tree --x_size=100 --y_size=100
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,484.5)$

Uniform Spanning Tree in $\mathbb{Z}^{2}(d=100)$

\$./uniform_spanning_tree --x_size=100 --y_size=100
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,484.5)$

UST for hexagonal tiling of plane $(d=10)$

\$./ uniform_spanning_tree -x_size $=10-y_{-}$size $=10-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-299.101)$

UST for hexagonal tiling of plane $(d=10)$

\$./ uniform_spanning_tree -x_size $=10-y_{-}$size $=10-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-299.101)$

UST for hexagonal tiling of plane $(d=10)$

\$./ uniform_spanning_tree -x_size $=10-y_{-}$size $=10-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-299.101)$

UST for hexagonal tiling of plane $(d=10)$

\$./ uniform_spanning_tree -x_size $=10-y_{-}$size $=10-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-299.101)$

UST for hexagonal tiling of plane $(d=10)$

\$./ uniform_spanning_tree -x_size $=10-y_{-}$size $=10-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-299.101)$

UST for hexagonal tiling of plane $(d=60)$

\$./uniform_spanning_tree -x_size $=60-y _$size $=60-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,486.8)$

UST for hexagonal tiling of plane $(d=60)$

\$./uniform_spanning_tree -x_size $=60-y _$size $=60-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,486.8)$

UST for hexagonal tiling of plane $(d=60)$

\$./uniform_spanning_tree -x_size $=60-y _$size $=60-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,486.8)$

UST for hexagonal tiling of plane $(d=60)$

\$./uniform_spanning_tree -x_size $=60-y _$size $=60-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,486.8)$

UST for hexagonal tiling of plane $(d=60)$

\$./uniform_spanning_tree -x_size $=60-y _$size $=60-$ hexagonal=true
Real-symm' elementary kernel; Sample likelihoods: $\exp (-11,486.8)$

Hermitian Determinantal Point Processes

Definition 1. A (Hermitian) marginal kernel matrix is a (real or complex) Hermitian matrix whose eigenvalues live in $[0,1]$.

Definition 2. A (finite, Hermitian) Determinantal Point Process (DPP) is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=\{0, \ldots, n-1\}=[n]$ generated by a $n \times n$ (Hermitian) marginal kernel matrix K via the rule

$$
\mathbb{P}_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

where K_{Y} is the $|Y| \times|Y|$ submatrix of K formed by restricting to the rows and columns in the index set Y.

Definition 3. A (Hermitian) DPP is called elementary if the eigenvalues of its marginal kernel matrix all lie in $\{0,1\}$

Hermitian Determinantal Point Processes

Definition 1. A (Hermitian) marginal kernel matrix is a (real or complex) Hermitian matrix whose eigenvalues live in $[0,1]$.

Definition 2. A (finite, Hermitian) Determinantal Point Process (DPP) is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=\{0, \ldots, n-1\}=[n]$ generated by a $n \times n$ (Hermitian) marginal kernel matrix K via the rule

$$
\mathbb{P}_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

where K_{Y} is the $|Y| \times|Y|$ submatrix of K formed by restricting to the rows and columns in the index set Y.

Definition 3. A (Hermitian) DPP is called elementary if the eigenvalues of its marginal kernel matrix all lie in $\{0,1\}$

Hermitian Determinantal Point Processes

Definition 1. A (Hermitian) marginal kernel matrix is a (real or complex) Hermitian matrix whose eigenvalues live in $[0,1]$.

Definition 2. A (finite, Hermitian) Determinantal Point Process (DPP) is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=\{0, \ldots, n-1\}=[n]$ generated by a $n \times n$ (Hermitian) marginal kernel matrix K via the rule

$$
\mathbb{P}_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

where K_{Y} is the $|Y| \times|Y|$ submatrix of K formed by restricting to the rows and columns in the index set Y.

Definition 3. A (Hermitian) DPP is called elementary if the eigenvalues of its marginal kernel matrix all lie in $\{0,1\}$.

Non-Hermitian DPP kernels

Definition 4. A (finite) Determinantal Point Process is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=[n]$ generated by an admissible $K \in \mathbb{C}^{n \times n}$ that is consistent with the rule:

$$
\mathbb{P}_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

Proposition 1 (Brunel-2018). A matrix $K \in \mathbb{C}^{n \times n}$ is admissible as a DPP marginal kernel iff

$$
(-1)^{|J|} \operatorname{det}\left(K-I_{J}\right) \geq 0, \quad \forall J \subseteq[n] .
$$

Non-Hermitian DPP kernels

Definition 4. A (finite) Determinantal Point Process is a random variable \mathbf{Y} over the power set of $\mathcal{Y}=[n]$ generated by an admissible $K \in \mathbb{C}^{n \times n}$ that is consistent with the rule:

$$
\mathbb{P}_{K}[Y \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{Y}\right)
$$

Proposition 1 (Brunel-2018). A matrix $K \in \mathbb{C}^{n \times n}$ is admissible as a DPP marginal kernel iff

$$
(-1)^{|J|} \operatorname{det}\left(K-I_{J}\right) \geq 0, \quad \forall J \subseteq[n] .
$$

Equivalence classes of DPP kernels

Proposition 2 (P-2019). The equivalence class of a structurally symmetric DPP kernel $K \in \mathbb{C}^{n \times n}$ is its orbit under the group of diagonal similarity transformations, i.e.,

$$
\left\{D^{-1} K D: D=\operatorname{diag}(d), d \in\left(\mathbb{C}^{x}\right)^{n}\right\} .
$$

For complex Hermitian and real symmetric K, the entries of D must respectively lie in $U(1)$ and $O(1)$.

Proposition 3 ($\mathrm{P}-2019$). The equivalence class of a structurally nonsymmetric DPP kernel K strictly contains the its orbit under the group of diagonal similarity transformations.

Proof.
If structural symmetry is broken at a 2×2 submatrix, we need only
observe that:

but neither is contained in the orbit of the other.

Equivalence classes of DPP kernels

Proposition 2 (P-2019). The equivalence class of a structurally symmetric DPP kernel $K \in \mathbb{C}^{n \times n}$ is its orbit under the group of diagonal similarity transformations, i.e.,

$$
\left\{D^{-1} K D: D=\operatorname{diag}(d), d \in\left(\mathbb{C}^{\times}\right)^{n}\right\} .
$$

For complex Hermitian and real symmetric K, the entries of D must respectively lie in $U(1)$ and $O(1)$.

Proposition 3 (P-2019). The equivalence class of a structurally nonsymmetric DPP kernel K strictly contains the its orbit under the group of diagonal similarity transformations.
Proof.
If structural symmetry is broken at a 2×2 submatrix, we need only observe that:

$$
\operatorname{DPP}\left(\left(\begin{array}{ll}
\alpha & 0 \\
\beta & \gamma
\end{array}\right)\right) \equiv \operatorname{DPP}\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & \gamma
\end{array}\right)\right)
$$

but neither is contained in the orbit of the other.

Conditioning and Schur complements

Proposition 4. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right)
$$

Proof.
$\operatorname{det}\left(K_{A \cup B}\right)=\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right)$

$$
\mathbb{P}[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\frac{\operatorname{det}\left(K_{A \cup B}\right)}{\operatorname{det}\left(K_{A}\right)}
$$

Conditioning and Schur complements

Proposition 4. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right)
$$

Proof.

$$
\operatorname{det}\left(K_{A \cup B}\right)=\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B, A} K_{A}^{-1} K_{A, B}\right)
$$

and

$$
\mathbb{P}[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}]=\frac{\operatorname{det}\left(K_{A \cup B}\right)}{\operatorname{det}\left(K_{A}\right)} . \square
$$

Conditioning and Schur complements

Proposition 5. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}-K_{B, A}\left(K_{A}-I\right)^{-1} K_{A, B}\right)
$$

Proof.
The claim follows from repeated application of the case where A is a single element, a

Conditioning and Schur complements

Proposition 5. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}-K_{B, A}\left(K_{A}-I\right)^{-1} K_{A, B}\right)
$$

Proof.
The claim follows from repeated application of the case where A is a single element, a :

$$
\mathbb{P}[B \subseteq \mathbf{Y} \mid a \notin \mathbf{Y}]=\frac{\mathbb{P}[a \notin \mathbf{Y} \mid B \subseteq \mathbf{Y}] \mathbb{P}[B \subseteq \mathbf{Y}]}{\mathbb{P}[a \notin \mathbf{Y}]}
$$

Conditioning and Schur complements

Proposition 5. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}-K_{B, A}\left(K_{A}-I\right)^{-1} K_{A, B}\right)
$$

Proof.
The claim follows from repeated application of the case where A is a single element, a :

$$
\begin{aligned}
\mathbb{P}[B \subseteq \mathbf{Y} \mid a \notin \mathbf{Y}] & =\frac{\mathbb{P}[a \notin \mathbf{Y} \mid B \subseteq \mathbf{Y}] \mathbb{P}[B \subseteq \mathbf{Y}]}{\mathbb{P}[a \notin \mathbf{Y}]} \\
& =\frac{(1-\mathbb{P}[a \in \mathbf{Y} \mid B \subseteq \mathbf{Y}]) \mathbb{P}[B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]}
\end{aligned}
$$

Conditioning and Schur complements

Proposition 5. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}-K_{B, A}\left(K_{A}-I\right)^{-1} K_{A, B}\right)
$$

Proof.

The claim follows from repeated application of the case where A is a single element, a :

$$
\begin{aligned}
\mathbb{P}[B \subseteq \mathbf{Y} \mid a \notin \mathbf{Y}] & =\frac{\mathbb{P}[a \notin \mathbf{Y} \mid B \subseteq \mathbf{Y}] \mathbb{P}[B \subseteq \mathbf{Y}]}{\mathbb{P}[a \notin \mathbf{Y}]} \\
& =\frac{(1-\mathbb{P}[a \in \mathbf{Y} \mid B \subseteq \mathbf{Y}]) \mathbb{P}[B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]} \\
& =\frac{\mathbb{P}[B \subseteq \mathbf{Y}]-\mathbb{P}[a \in \mathbf{Y} \wedge B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]}
\end{aligned}
$$

Conditioning and Schur complements

Proposition 5. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}-K_{B, A}\left(K_{A}-I\right)^{-1} K_{A, B}\right)
$$

Proof.

The claim follows from repeated application of the case where A is a single element, a :

$$
\begin{aligned}
\mathbb{P}[B \subseteq \mathbf{Y} \mid a \notin \mathbf{Y}] & =\frac{\mathbb{P}[a \notin \mathbf{Y} \mid B \subseteq \mathbf{Y}] \mathbb{P}[B \subseteq \mathbf{Y}]}{\mathbb{P}[a \notin \mathbf{Y}]} \\
& =\frac{(1-\mathbb{P}[a \in \mathbf{Y} \mid B \subseteq \mathbf{Y}]) \mathbb{P}[B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]} \\
& =\frac{\mathbb{P}[B \subseteq \mathbf{Y}]-\mathbb{P}[a \in \mathbf{Y} \wedge B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]} \\
& =\frac{\operatorname{det}\left(K_{B}\right)-\operatorname{det}\left(K_{a \cup B}\right)}{1-K_{a}} \\
& =\operatorname{det}\left(K_{B}\right)\left(1-K_{a, B} \frac{K_{B}}{K_{a}-1} K_{B, a}\right) \\
& =\operatorname{det}\left(K_{B}-K_{B, a}\left(K_{a}-1\right)^{-1} K_{a, B}\right)
\end{aligned}
$$

Conditioning and Schur complements

Proposition 5. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}-K_{B, A}\left(K_{A}-I\right)^{-1} K_{A, B}\right)
$$

Proof.

The claim follows from repeated application of the case where A is a single element, a :

$$
\begin{aligned}
\mathbb{P}[B \subseteq \mathbf{Y} \mid a \notin \mathbf{Y}] & =\frac{\mathbb{P}[a \notin \mathbf{Y} \mid B \subseteq \mathbf{Y}] \mathbb{P}[B \subseteq \mathbf{Y}]}{\mathbb{P}[a \notin \mathbf{Y}]} \\
& =\frac{(1-\mathbb{P}[a \in \mathbf{Y} \mid B \subseteq \mathbf{Y}]) \mathbb{P}[B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]} \\
& =\frac{\mathbb{P}[B \subseteq \mathbf{Y}]-\mathbb{P}[a \in \mathbf{Y} \wedge B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]} \\
& =\frac{\operatorname{det}\left(K_{B}\right)-\operatorname{det}\left(K_{a \cup B}\right)}{1-K_{a}} \\
& =\operatorname{det}\left(K_{B}\right)\left(1-K_{a, B} \frac{K_{B}{ }^{-1}}{K_{a}-1} K_{B, a}\right)
\end{aligned}
$$

Conditioning and Schur complements

Proposition 5. Given disjoint subsets $A, B \subset \mathcal{Y}$,

$$
\mathbb{P}\left[B \subseteq \mathbf{Y} \mid A \subseteq \mathbf{Y}^{c}\right]=\operatorname{det}\left(K_{B}-K_{B, A}\left(K_{A}-I\right)^{-1} K_{A, B}\right)
$$

Proof.

The claim follows from repeated application of the case where A is a single element, a :

$$
\begin{aligned}
\mathbb{P}[B \subseteq \mathbf{Y} \mid a \notin \mathbf{Y}] & =\frac{\mathbb{P}[a \notin \mathbf{Y} \mid B \subseteq \mathbf{Y}] \mathbb{P}[B \subseteq \mathbf{Y}]}{\mathbb{P}[a \notin \mathbf{Y}]} \\
& =\frac{(1-\mathbb{P}[a \in \mathbf{Y} \mid B \subseteq \mathbf{Y}]) \mathbb{P}[B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]} \\
& =\frac{\mathbb{P}[B \subseteq \mathbf{Y}]-\mathbb{P}[a \in \mathbf{Y} \wedge B \subseteq \mathbf{Y}]}{1-\mathbb{P}[a \in \mathbf{Y}]} \\
& =\frac{\operatorname{det}\left(K_{B}\right)-\operatorname{det}\left(K_{a \cup B}\right)}{1-K_{a}} \\
& =\operatorname{det}\left(K_{B}\right)\left(1-K_{a, B} \frac{K_{B}{ }^{-1}}{K_{a}-1} K_{B, a}\right) \\
& =\operatorname{det}\left(K_{B}-K_{B, a}\left(K_{a}-1\right)^{-1} K_{a, B}\right)
\end{aligned}
$$

Traditional Hermitian DPP sampling

Lemma 5 (Hough et al.-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{z}\right)$, where $P(U) \equiv U U^{*}$ and Q_{z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.
> "Alg. 1 runs in time $O\left(N k^{3}\right)$, where k is the number of eigenvectors selected $[\ldots]$ the initial eigendecomposition of $[K]$ is often the computational bottleneck, requiring $O\left(N^{3}\right)$ time. Modern multi-core machines can compute eigendecompositions up to $N \approx 1,000$ at interactive speeds of a few seconds, or larger problems up to $N \approx 10,000$ in around ten minutes. [Kulesza/Taskar-2012]
> [Gillenwater-2014] reduced the factored elementary DPP sampling down to cubic complevity via what is equivalent to diagonally-pivoted Cholesky.

Traditional Hermitian DPP sampling

Lemma 5 (Hough et al.-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{z}\right)$, where $P(U) \equiv U U^{*}$ and Q_{z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.
"Alg. 1 runs in time $O\left(N k^{3}\right)$, where k is the number of eigenvectors selected [...] the initial eigendecomposition of $[K]$ is often the computational bottleneck, requiring $O\left(N^{3}\right)$ time. Modern multi-core machines can compute eigendecompositions up to $N \approx 1,000$ at interactive speeds of a few seconds, or larger problems up to $N \approx 10,000$ in around ten minutes."
[Kulesza/Taskar-2012]
[Gillenwater-2014] reduced the factored elementary DPP sampling down to cubic complexity via what is equivalent to diagonally-nivoted Cholesky. ${ }^{1}$

Traditional Hermitian DPP sampling

Lemma 5 (Hough et al.-2006). Given any $\mathbf{Y} \sim \operatorname{DPP}(K)$, where K has spectral decomposition $Q \wedge Q^{*}$, sampling from \mathbf{Y} is equivalent to sampling from the random elementary DPP with kernel $P\left(Q_{\mathrm{z}}\right)$, where $P(U) \equiv U U^{*}$ and Q_{z} consists of the columns of Q with indices from $\mathbf{Z} \sim \operatorname{DPP}(\Lambda)$.
"Alg. 1 runs in time $O\left(N k^{3}\right)$, where k is the number of eigenvectors selected [...] the initial eigendecomposition of [K] is often the computational bottleneck, requiring $O\left(N^{3}\right)$ time. Modern multi-core machines can compute eigendecompositions up to $N \approx 1,000$ at interactive speeds of a few seconds, or larger problems up to $N \approx 10,000$ in around ten minutes."
[Kulesza/Taskar-2012]
[Gillenwater-2014] reduced the factored elementary DPP sampling down to cubic complexity via what is equivalent to diagonally-pivoted Cholesky. ${ }^{1}$

[^1]
Traditional Hermitian DPP sampling

Recently, authors are noticing connections to $L D L^{H}$ factorizations. ${ }^{23}$
In [Launay et al.-2018], timings are provided for the spectrally-preprocessed and "sequentially thinned" algorithm for elementary real symmetric kernels of rank 20 and varying size (left) and varying rank and size 5000 (right):

This talk decreases runtimes by 100-1000x, for more general kernels, by
importing dense factorization techniques. We then extend to non-Hermitian
and sparse-direct analogues.
${ }^{2}$ [Chen et al.-2017] Fast Greedy MAP inference for Det' Point Processes
${ }^{3}$ [Launay et al.-2018] Exact sampling of determinantal point processes without eigendecomposition. arxiv.org/abs/1802.08429v3

Traditional Hermitian DPP sampling

Recently, authors are noticing connections to $L D L^{H}$ factorizations. ${ }^{23}$
In [Launay et al.-2018], timings are provided for the spectrally-preprocessed and "sequentially thinned" algorithm for elementary real symmetric kernels of rank 20 and varying size (left) and varying rank and size 5000 (right):

This talk decreases runtimes by 100-1000x, for more general kernels, by importing dense factorization techniques. We then extend to non-Hermitian and sparse-direct analogues.
${ }^{2}$ [Chen et al.-2017] Fast Greedy MAP inference for Det' Point Processes ${ }^{3}$ [Launay et al.-2018] Exact sampling of determinantal point processes without eigendecomposition. arxiv.org/abs/1802.08429v3

Unblocked DPP sampling factorization

```
sample = []
for j in range(n):
    J2 = [j+1:n]
    if Bernoulli(K(j,j)):
            sample.append(j)
    else:
        K(j,j) -= 1
    K(J2,j) /= K(j,j)
    K(J2,J2) -= K(J2,j) * K(j, J2)
return sample
```

This is a small tweak of unblocked, unpivoted LU factorization - readily specializable to $L D L^{H}$ and $L D L^{T}$ for Hermitian and complex symmetric matrices.

The majority of the work is in rank-1 updates. And the standard optimizations apply (e.g., blocking and sparse-direct factorization)!

The likelihood of the sample is equal to the product of the absolute value of the diagonal of the result.

Unblocked DPP sampling factorization

```
sample = []
for j in range(n):
    J2 = [j+1:n]
    if Bernoulli(K(j,j)):
        sample.append(j)
    else:
        K(j,j) -= 1
    K(J2,j) /= K(j , j)
    K(J2,J2) -= K(J2,j) * K(j, J2)
return sample
```

This is a small tweak of unblocked, unpivoted LU factorization - readily specializable to $L D L^{H}$ and $L D L^{T}$ for Hermitian and complex symmetric matrices.

The majority of the work is in rank-1 updates. And the standard optimizations apply (e.g., blocking and sparse-direct factorization)!

Unblocked DPP sampling factorization

```
sample = []
for j in range(n):
    J2 = [j+1:n]
    if Bernoulli(K(j,j)):
        sample.append(j)
    else:
        K(j,j) -= 1
    K(J2,j) /= K(j,j)
    K(J2,J2) -= K(J2,j) * K(j,J2)
return sample
```

This is a small tweak of unblocked, unpivoted LU factorization - readily specializable to $L D L^{H}$ and $L D L^{T}$ for Hermitian and complex symmetric matrices.

The majority of the work is in rank-1 updates. And the standard optimizations apply (e.g., blocking and sparse-direct factorization)!

Unblocked DPP sampling factorization

```
sample = []
for j in range(n):
    J2 = [j+1:n]
    if Bernoulli(K(j,j)):
        sample.append(j)
    else:
        K(j,j) -= 1
    K(J2,j) /= K(j,j)
    K(J2,J2) -= K(J2,j) * K(j,J2)
return sample
```

This is a small tweak of unblocked, unpivoted LU factorization - readily specializable to $L D L^{H}$ and $L D L^{T}$ for Hermitian and complex symmetric matrices.

The majority of the work is in rank-1 updates. And the standard optimizations apply (e.g., blocking and sparse-direct factorization)!

The likelihood of the sample is equal to the product of the absolute value of the diagonal of the result.

Blocked DPP sampling factorization

```
sample = []
J1_beg = 0
while J1_beg < n:
    J1_end = min(n, J1_beg+blocksize)
    J1 = [J1_beg:J1_end]; J2 = [J1_end:n]
    subsample, K(J1,J1) = unblocked_dpp(K(J1,J1))
    sample.append(subsample + J1_beg)
    K(J2,J1) /= triu(K(J1,J1))
    K(J1,J2) \= unit_tril(K(J1,J1))
    K(J2,J2) -= K(J2,J1) * K(J1,J2)
    J1_beg = J1_end
return sample
```

OpenMP 4.0 tasks - say, with tile sizes of 128 - can be readily used to provide shared-memory, DAG-scheduled parallelism

Blocked DPP sampling factorization

```
sample = []
J1_beg = 0
while J1_beg < n:
    J1_end = min(n, J1_beg+blocksize)
    J1 = [J1_beg:J1_end]; J2 = [J1_end:n]
    subsample, K(J1,J1) = unblocked_dpp(K(J1,J1))
    sample.append(subsample + J1_beg)
    K(J2,J1) /= triu(K(J1,J1))
    K(J1,J2) \= unit_tril(K(J1,J1))
    K(J2,J2) -= K(J2,J1) * K(J1,J2)
    J1_beg = J1_end
return sample
```

OpenMP 4.0 tasks - say, with tile sizes of 128 - can be readily used to provide shared-memory, DAG-scheduled parallelism [Agullo/Langou/Luszczek-2010, Yarkhan et al.-2011, Chan et al.-2007].

Unblocked, greedy, MAP DPP sampling

```
sample = []
for j in range(n):
    J2 = [j+1:n]
    if K(j,j) >= 0.5:
        sample.append(j)
    else:
        K(j,j) -= 1
    K(J2,j) /= K(j , j)
    K(J2,J2) -= K(J2,j) * K(j, J2)
return sample
```


Unblocked, greedy, MAP DPP sampling

```
sample = []
for j in range(n):
    J2 = [j+1:n]
    if K(j,j) >= 0.5:
        sample.append(j)
    else:
        K(j,j) -= 1
    K(J2,j) /= K(j,j)
    K(J2,J2) -= K(J2,j) * K(j, J2)
return sample
```

Greedy MAP sampling is a trivial tweak of the standard sampler, and the blocked extension is essentially identical.

Full-rank real symmetric DPP on i9-7960x (16-core)

Dense, real $L D L^{H}$-based DPP sampler [P -2019].
\$ OMP_NUM_THREADS=16 ./dense_dpp

Aztec diamond DPP on i9-7960x (16-core)

Dense, complex LU-based DPP sampler [P-2019].*

Single-precision

*Generated from the Kenyon formula over the Kasteleyn matrix [Chhita et al.-2015].

Dense, real LDL ${ }^{\text {H}}$-based DPP sampler [P-2019].*

$-\times$	Single-precision
-0	Double-precision

*Over the Gramian of the star space basis [Lyons/Peres-2016].

Dense, real LDL ${ }^{\text {H}}$-based DPP sampler [P-2019].*

\longrightarrow Single-precision
\rightarrow Single-precision
-O-Double-precision

- - Double-precision

*Over the Gramian of the star space basis [Lyons/Peres-2016].

Low precision corrupting sampling

\$./aztec_diamond --diamond_size=80

Double-precision sample

Single-precision sample (visibly erroneous)

Basic questions for DPP factorizations

Given the close connection between DPP sampling and dense factorization:

- One should be able to probabilistically generalize element growth and numerical stability bounds.
- Use maximum-entropy diagonal pivot selection? Minimizes worst case pivot.
- High-performance techniques for backpropagating through Cholesky are now known [Murray-2016].4 Do these blocked algorithms extend to DPPs?

[^2]
Basic questions for DPP factorizations

Given the close connection between DPP sampling and dense factorization:

- One should be able to probabilistically generalize element growth and numerical stability bounds.
- Use maximum-entropy diagonal pivot selection? Minimizes worst case pivot.
- High-performance techniques for backpropagating through Cholesky are now known [Murray-2016].4 Do these blocked algorithms extend to DPPs?

[^3]
Basic questions for DPP factorizations

Given the close connection between DPP sampling and dense factorization:

- One should be able to probabilistically generalize element growth and numerical stability bounds.
- Use maximum-entropy diagonal pivot selection? Minimizes worst case pivot.
- High-performance techniques for backpropagating through Cholesky are now known [Murray-2016]. ${ }^{4}$ Do these blocked algorithms extend to DPPs?

[^4]
Sparse-direct DPP factorizations

We have so-far discussed analogues of dense factorizations, and sparse-direct analogues are a natural extension.

[^5]
Sparse-direct DPP factorizations

We have so-far discussed analogues of dense factorizations, and sparse-direct analogues are a natural extension.

Catamari implements templated, real and complex, Cholesky / LDL ${ }^{H}$ / $L D L^{T}$ - switching between DAG-scheduled, right-looking supernodal and up-looking simplicial based upon arithmetic intensity [Chen/Davis/Hager/Rajamanickam-2008].

A variant of the sparse-direct $L D L^{H}$ is provided for sparse DPPs. (Unpivoted) sparse-direct LU and $L D L^{\top}$ DPP sampling is a straight-forward extension.

Sparse-direct DPP factorizations

We have so-far discussed analogues of dense factorizations, and sparse-direct analogues are a natural extension.

Catamari implements templated, real and complex, Cholesky / LDL ${ }^{H}$ / $L D L^{T}$ - switching between DAG-scheduled, right-looking supernodal and up-looking simplicial based upon arithmetic intensity [Chen/Davis/Hager/Rajamanickam-2008].

A variant of the sparse-direct $L D L^{H}$ is provided for sparse DPPs. (Unpivoted) sparse-direct LU and $L D L^{T}$ DPP sampling is a straight-forward extension.

Complex sparse $L D L^{T}$ on i9-7960x (16-core)

3D Helmholtz w/ PML and trilinear, hexahedral elements

\$ OMP_NUM_THREADS=16 ./helmholtz_3d_pml

- Double-precision (with symbolic)
- O Double-precision (w/o symbolic)

(MAP) Sampling from 2D $-\sigma \Delta$

```
$ ./dpp_shifted_2d_negative_laplacian \
    --x_size=200 --y_size=200 --scale=0.72
```


Log-likelihood: -27472.2

Sample time: 0.0107 seconds

Log-likelihood: -26058 Sample time: 0.0112 seconds

(MAP) Sampling from 2D $-\sigma \Delta$

```
$ ./dpp_shifted_2d_negative_laplacian \
    --x_size=200 --y_size=200 --scale=0.75
```


Log-likelihood: -27612.6
Sample time: 0.0124 seconds

Log-likelihood: -26009

(MAP) Sampling from 2D $-\sigma \Delta$

```
$ ./dpp_shifted_2d_negative_laplacian \
    --x_size=200 --y_size=200 --scale=0.85
```


Log-likelihood: -27581.7
Sample time: 0.0114 seconds

Log-likelihood: -25765 Sample time: 0.0118 seconds

Closing

Availability:

Quotient is available under the Mozilla Public License 2.0 at hodgestar.com/quotient/ and gitlab.com/hodge_star/quotient.
This talk is based on version 0.2 .
Catamari is available under the Mozilla Public License 2.0 at hodgestar.com/catamari/ and gitlab.com/hodge_star/catamari. This talk is based on version 0.2.3.

These slides are available at:
hodgestar.com/catamari/April8-2019-RoyalSociety.pdf

Acknowledgements:

- Alex Kulesza and Jenny Gillenwater: For answering my initial DPP sampling questions.

Questions/comments?

[^0]: The likelihood of the sample is thus the product of the absolute value of the diagonal of the 'factorization'

 Essentially all high-performance techniques for dense and sparse-direct factorizations therefore carry over.

[^1]: ${ }^{1}$ [Gillenwater-2014] Approximate inference for determinantal point processes

[^2]: ${ }^{4}$ [Murray-2016] Differentiation of the Cholesky decomposition. arxiv.org/abs/1602.07527

[^3]: ${ }^{4}$ [Murray-2016] Differentiation of the Cholesky decomposition.
 arxiv.org/abs/1602.07527

[^4]: ${ }^{4}$ [Murray-2016] Differentiation of the Cholesky decomposition. arxiv.org/abs/1602.07527

[^5]: Catamari implements templated, real and complex, Cholesky / LDL ${ }^{H}$ $L D L^{T}$ - switching between DAG-scheduled, right-looking supernodal and up-looking simplicial based upon arithmetic intensity [Chen/Davis/Hager/Rajamanickam-2008]

 A variant of the sparse-direct $L D L^{H}$ is provided for sparse DPPs. (Unpivoted) sparse-direct $L U$ and $L D L^{\top}$ DPP sampling is a straight-forward extension.

