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Trends in Next-Generation Systems

Source: Lucy Nowell (DOE)
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Classical Molecular Dynamics Simulations 

By Vincent Voelz Gorup - CC BY-SA 3.0,  http://www.voelzlab.org/

• A MD simulation comprises of 
hundreds of thousands of MD job

• Each job preforms hundreds of 
thousands of MD steps
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Classical Molecular Dynamics Simulations 

Forces on single atoms 
à Acceleration 

à Velocity 
à Position

• A MD step computes forces 
on single atoms (e.g., bond, 
angle, dihedrals, nonbond)
• Forces are added to 

compute acceleration
• Acceleration is used to 

update velocities 
• Velocities are used to 

update the atom positions
• Every n steps, all atom 

positions are stored 
à 3D snapshot or frame
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Analyzing MD Frames: Present and Future  
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In Situ and In Transit Analysis
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Example of tools:
• DataSpaces (Rutgers U.)
• DataStager (GeorgiaTech)

In situ and in transit analysis requires rethinking data algorithms  
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Building a Closed-loop Workflow

Plumed

MD code 
(e.g., GROMACS)

In-memory 
Staging Area
DataSpaces

A4MD
analytics

Retriever

Dataflow

Ingestor
Controlflow

Run n-stride 
simulation steps Collective 

variables

Data Generation Data AnalyticsData Storage

Dataflow

Burst Buffer

Parallel File 
System

(e.g., Lustre)

A4MD
analytics

A4MD
analytics

algorithms

ML-inferred 
algorithms

Controlflow ControlflowControlflow

Data Feedback

8



Building a Closed-loop Workflow

Plumed

MD code 
(e.g., GROMACS)

In-memory 
Staging Area
DataSpaces

In-memory 
Staging Area
DataSpaces RetrieverRetriever

DataflowDataflow

IngestorIngestor
ControlflowControlflow

Run n-Stride 
simulation steps
Run n-Stride 
simulation steps Collective 

variables
Collective 
variables

Data GenerationData Generation Data AnalyticsData AnalyticsData StorageData Storage

DataflowDataflow

Burst BufferBurst Buffer

Parallel File 
System

(e.g., Lustre)

Parallel File 
System

(e.g., Lustre)

ML-inferred 
algorithms
ML-inferred 
algorithms

ControlflowControlflow ControlflowControlflowControlflowControlflow

Data FeedbackData Feedback

Plumed

MD code 
(e.g., GROMACS)

In-memory 
Staging Area
DataSpaces Retriever

Dataflow

Ingestor
Controlflow

Run n-Stride 
simulation steps Collective 

variables

Data Generation Data AnalyticsData Storage

Dataflow

Burst Buffer

Parallel File 
System

(e.g., Lustre)

ML-inferred 
algorithms

Controlflow ControlflowControlflow

Data Feedback

A4MD
analytics

A4MD
analytics

A4MD
analytics

algorithms

9



Analytics for Molecular Dynamics 

• Drug design and protein-ligand docking
• Protein folding and rare events 
• Protein variants expressed from yeast or bacteria and 

protein engineering
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A4MD: Protein-Ligand Docking
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T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, M. Taufer: A scalable and accurate method for classifying protein-ligand 
binding geometries using a MapReduce approach. Comp. in Bio. and Med. 42(7): 758-771 (2012)



From 3D Atomic Structures to 3D Points
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Search for Dense Spaces: Octree Clustering 
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Search for Dense Spaces: Octree Clustering 

Octree nodes

Metadata: 
ligand conformations
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Search for Dense Spaces: Octree Clustering 

Near-native ligand 
structures 

(RMSD <= 2A)

Deepest, more 
dense octant 

found by 
octree clustering
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Search: Linear in complexity using Mimir
- a MapReduce over MPI framework



Case Study: Sampled Conformations - Ligand 1k1l
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T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, M. Taufer: A scalable and accurate method for classifying protein-ligand 
binding geometries using a MapReduce approach. Comp. in Bio. and Med. 42(7): 758-771 (2012)



Case Study: Sampled Conformations - Ligand 1k1l

Near-native ligand 
structures 

(RMSD <= 2A)

Deepest, more 
dense octant 

found by 
octree clustering
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Analytics for Molecular Dynamics 

• Drug design and protein-ligand docking
• Protein folding and rare events 
• Protein variants expressed from yeast or bacteria and 

protein engineering



A4MD: Rare Events in MD Simulations

Transformations: 

Movements: 

20



A4MD: Rare Events in MD Simulations

• We want to capture what is going on in each frame without:
• Disrupting the simulation (e.g., stealing CPU and memory on 

the node)
• Moving all the frames to a central file system and analyzing 

them once the simulation is over
• Comparing each frame with past frames of the same job
• Comparing each frame with frames of other jobs 

Frames (or snapshots) of an MD trajectory:

Frame 55 Frame 60 Frame 65 Frame 70 Frame 75 Frame 80
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From 3D Atomic Structure to a Single Eigenvalue

Drop all but not the backbone 
atoms (Cα atoms)

Cβ
iCα

j

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. In-Situ Data Analytics and Indexing of 
Protein Trajectories. Journal of Computational Chemistry (JCC), 38(16):1419-1430, 2017. 



From 3D Atomic Structure to a Single Eigenvalue

Measure the distance 
between Cα

j and Cβ
i

Build a bipartite distance matrix by 
comparing two substructures

i

j

λmaxCompute largest eigenvalue 

Cβ
iCα

j d

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. In-Situ Data Analytics and Indexing of 
Protein Trajectories. Journal of Computational Chemistry (JCC), 38(16):1419-1430, 2017. 



Case Study: Capturing Movement of α-helices

24

Capture movement of structures (α-helices) 
with respect to each other

1330 1360 1390

T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer. In-Situ Data Analytics and Indexing of Protein Trajectories. 
Journal of Computational Chemistry (JCC), 38(16):1419-1430, 2017. 
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Case Study: Capturing Movement of α-helices

Monitor largest eigenvalue of entire protein
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Case Study: Capturing Movement of α-helices

Something is changing

Monitor largest eigenvalue of entire protein
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Case Study: Capturing Movement of α-helices

Individual α-helices (Helix 1, Helix 2, and Helix 3) appear stable

Monitor largest eigenvalue of single α-helices
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Case Study: Capturing Movement of α-helices

Monitor largest eigenvalue of bipartite distance matrix 

First and second α-helices appear stable; third helix moves
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1330

1360

1390

Case Study: Capturing 
Movement of α-helices

Analysis: Linear in complexity using local 
metadata (eigenvalues) with DataSpaces



Analytics for Molecular Dynamics 

• Drug design and protein-ligand docking
• Protein folding and rare events 
• Protein variants expressed from yeast or bacteria 

and protein engineering



A4MD: Proteins with Similar Functions 
Key principle: proteins with similar sequences have similar functions
• Measure millions of protein variants expressed from yeast or bacteria
• Structure proteins to produce desired properties (protein engineering) 
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Protein Representations  

3D Cartesian representation Surface representationMulti-fold representation
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From Multi-fold Representation to Image Encoding
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T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer. Graphic
Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.



From Multi-fold Representation to Image Encoding

T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer. Graphic
Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.
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From Multi-fold Representation to Image Encoding

T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer. Graphic
Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.



Case Study: High-Throughput Protein Analysis

convolutional 
neural network

• 62,991 proteins from the Protein Data Bank
• Eight biological processes from biological process taxonomy in RCSB-PDB

Proteins as 3D tens

T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer. Graphic
Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.
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Google’s Inception-v3, 
Gem-Net



Challenges and Opportunity 

A workflow that integrates both simulations and analytics must 
have these key properties: 
• Efficiency: Optimize workflows’ performance and power usage 

associated to data movement and analytics
• Generality: Build workflows that support different types of 

analytics across different MD applications
• Non-invasive: Capture data from MD simulations without 

rewriting legacy codes or simulation scripts 
• Portability: Execute combined simulations and analytics across 

different platforms and with heterogenous resources 
• Scalability: (Re)design ML algorithms for knowledge discovery 

at scale
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