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What’s the most expensive operation on a computer?
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The memory wall (or swamp)
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Communication Avoiding “2.5D” Matrix Multiply
Solomonick & Demmel

x
z

z

y

x
y • Tiling the iteration space

• 2D algorithm: never chop k dim
• 2.5 or 3D: Assume + is 

associative; chop k, which is à
replication of C matrix

• Optimal for a given memory 
size (replication factor)

k

j

i Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i
for j

for k
B[k,j] …A[i,k] … C[i,j] …
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But does communication matter in biology? 

Isn’t biology embarrassingly parallel?
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Science Problems Fit Across the “Irregularity” Spectrum

Massive 
Independent 

Jobs for 
Analysis and 
Simulations

Nearest 
Neighbor 

Simulations

All-to-All 
Simulations

Random 
access, large 
data Analysis

… often they fit in multiple categories
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Problems in Computational Biology

• Graphical Models (Machine Learning)
• Genome Assembly
• Many-to-Many Alignment
• Imaging
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And how can we take ideas from numerical 
computing, linear algebra, and communication 
avoiding algorithms to this domain?
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HP-CONCORD on Brain fMRI data
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Figure 6: The clusterings from [14], for the left and right
hemispheres of the brain; the clusterings were generated by
applying a multi-class, shallow neural network to the same
data we use [29], but use a significant amount of domain
knowledge in order to post-processes the results by hand.
The colors have no significance, except to demarcate the
di↵erent clusters.

�1 = 0.48, �2 = 0.39, ✏ = 3, �1 = 0.5, �2 = 0.39, ✏ = 3, �1 = 0.48, �2 = 0.39, ✏ = 3,
% of best score = 100 % of best score = 100 % of best score = 100

�1 = 0.64, �2 = 0.13, k = 1, �1 = 0.5425, �2 = 0.39, k = 0, �1 = 0.64, �2 = 0.13, k = 1,
% of best score = 75.03 % of best score = 73.45 % of best score = 75.03

t = 99.9, k = 4, t = 99.9, k = 3, t = 99.9, k = 4

% of best score = 32.24 % of best score = 32.45 % of best score = 32.24

Table 2: Top row: the best clusterings generated by HP-CONCORD followed by the persistent homology method,
relative to the clusterings of [14] presented in Figure 6, according to the (modified) Jaccard score; the left and
middle columns present the results for the left and right hemispheres, respectively, while the right column
presents the sparsity pattern (black indicates a nonzero entry) of the HP-CONCORD estimate yielding the best
clustering for the left hemisphere (the sparsity patterns for the right hemisphere are in the supplement, for space
reasons). Middle row: the same plots, except for HP-CONCORD followed by the Louvain method. Bottom
row: the same plots, except generated by thresholding the sample covariance matrix at various levels. Indicated
below each clustering is the percentage of the best Jaccard score it attains (higher is better); since the persistent
homology clusterings perform the best, these percentages are just 100. The actual Jaccard scores, as well as a
significantly expanded set of results, can be found in the supplement. Also indicated are the tuning parameter
values yielding the clusterings (i.e., �1,�2 for HP-CONCORD; " � 0, k 2 Z+ controlling the number of clusters
for the persistent homology and Louvain methods, respectively; and t denoting the percentage of discarded
sample covariance matrix entries). The colors in the various plots have no special meaning.

(2) apply a graph-based clustering algorithm to the
partial correlation graph arising from the sparsity pat-
tern of the HP-CONCORD estimate. For (1), we
consider all combinations of the tuning parameters
�1 2{0.48, 0.5, 0.52, 0.54, 0.57, 0.59, 0.61, 0.64, 0.67,

0.69, 0.72}⇥�2 2{0.10, 0.13, 0.16, 0.2, 0.25, 0.31, 0.39,
0.49} (tuning parameters outside these ranges yielded
either trivially sparse or dense estimates); running HP-
CONCORD on a single (�1,�2) pair took ⇡ 37 min-
utes. For (2), the clustering algorithms we consider
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Inverse Covariance Matrix Estimation (CONCORD)
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Sparse-Dense Matrix Multiply Too!

• Variety of algorithms that divide in or 2 dimensions

9
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Algorithm - Replication Factor (c)

Koanantakool et al
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100x Improvement

• A66k x 172k, B172k x 66k, 0.0038% nnz, Cray XC30

10

100x

Up is good

Koanantakool et al
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Dense 
Matrix 
Vector

(BLAS2)

Sparse -
Sparse 
Matrix 

Product
(SpGEMM)

Sparse Matrix 
Times 

Multiple 
Dense Vectors

(SpMM)

Sparse 
Matrix-
Dense 
Vector 
(SpMV)

Sparse 
Matrix-
Sparse 
Vector 

(SpMSpV)

Increasing arithmetic intensity

Graphical 
Model 

Structure 
Learning (e.g., 

CONCORD)

Clustering 
(e.g., MCL, 

Spectral 
Clustering)

Logistic 
Regression, 

Support 
Vector 

Machines

Dimensionality 
Reduction (e.g., 
NMF, CX/CUR, 

PCA)

Linear Algebra is important to Machine Learning too!

Deep Learning 
(Convolutional 
Neural Nets)

Sparse -
Dense 
Matrix 

Product
(SpDM3)

Dense 
Matrix 
Matrix 

(BLAS3)

Aydin Buluc, Sang Oh, John Gilbert, Kathy Yelick- 11 -
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Problems in Computational Biology

• Graphical Models (Machine Learning)
• Genome Assembly
• Many-to-Many Alignment
• Imaging
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And how can we take ideas from numerical 
computing, linear algebra, and communication 
avoiding algorithms to this domain?
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De novo Genome Assembly

• De novo genome assembly: Reconstruct an unknown genome 
from a collection of short reads.

– Constructing a jigsaw puzzle without having the picture on the box

• Metagenome assembly: 100s-1000s of species 
mixed together

- 13 -
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The HipMer genome assembly pipeline has 4 phases

1) K-mer Analysis
(synchronous) irregular all-to-all

3) Alignment
asynchronous remote insert and 
lookup (software caching)
4) Scaffolding & Gap Closing
asynchronous remote insert and 
lookup (software caching)

2) Contig Generation

asynchronous remote insert 
(aggregate and overlap) and get

xxx xx xxxx

reads

k-mers

read-contig
alignments

contig-contig 
scaffolds

contigs

1

2

3

4

Georganas et al
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Alignment also uses hash tables

15

Graph construction, traversal, and all later stages are written in UPC to take advantage 
of its global address space

Georganas et al
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Hash Table Use Case 1: Global Update-Only phase

Pi

…

Local buffer for P0

Local buffer for P1

Local buffer for Pn

Buffer local to P0

P0

Full local buffer !!!

P0
P1
P2
P0
P1
P2
P0
P1
P2
P0…

P0

Aggregate remote transfer

P0 stores the received data in a lock-free & 
communication-free way

Georganas et al
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Georganas et al
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Strong scaling (human genome) on Cray XC30

• Complete assembly of human genome in 4 minutes using 23K cores.
• 700x speedup over original Meraculous (took 2,880 minutes on large shared memory with 

some Perl code); Some problems (wheat, squid, only run on HipMer version)

 16
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problems solvable!

- 18 - Georganas et al
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HipMer Used in Large Plant Assemblies

Genome Red Cedar Ceratopteris richardii Sugar Cane
Est. Genome Size 20GB 11GB 10GB

Assembly Size é 9.8 GB 6.8 GB 5.0 GB

Scaffold N50 é 794.2 KB 132.7 KB 56.1 KB

Contig N50 é 73.6 KB 17.1 KB 4.4 KB

Goltsmann, Rokhsar et al
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MetaHipMer used for pan genome study

271 MbAssembled Genome Size

Different parameters over 10 samplesSean Gordon (JGI, now Zymergen)
• MetaHipMer speed allows for parameter sweeps and produce higher quality results

54 de novo assemblies of the grass Brachypodium distachyon
• Nearly 2x the number of genes found in any individual genome
• Many “shell genes” species-wide are “core genes” within a subpopulation. 

Sean Gordon
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MetaHipMer for Understanding an environmental 
microbiome

21

Best paper nominee for SC18 by the MetaHipMer team: Evangelos Georganas, Rob 
Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt, Andrew Tritt, Aydın Buluc, 
Leonid Oliker, Katherine Yelick
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Hardware and Programming Requirements

22

Or at least a global address space
• High injection rate networks
• High bisection bandwidth with modest-

sized messages
• Remote (hardware) atomics
• Caching remote values sometimes useful 

(can be done in software)

Leverages hash table features
• Asynchronous random-access
• Inserts reordered (write-only phase)
• Lookups may involve marking elements 

(read-only phase)
• Good hash functions for load balance 

(and locality if genome ~known)

distributed hash tables all the way down...
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One-Sided Communication is Closer to Hardware

• Hardware does 1-sided communication
• Overhead for send/receive messaging is worse at exascale

message ID

address

data payload

data payload
two-sided put message

one-sided message

network
interface

memory

host
CPU

- 23 - Hargrove, Bonachea et al
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Problems in Computational Biology

• Graphical Models (Machine Learning)
• Genome Assembly
• Many-to-Many Alignment
• Imaging

- 24 -

And how can we take ideas from numerical 
computing, linear algebra, and communication 
avoiding algorithms to this domain?
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What is (Pairwise) Alignment?

Input
• pair of sequences
• method for scoring a candidate 

alignment 

ctgatcgtatctga
ctgcgaatccctga

Match =     +1
Mismatch = -1
Gap =         -2

ctgatcgtatc--tga
||| ||X||| |||  
ctg--cgaatccctga

11 matches:    +11
1 mismatch:   -1
4 gaps:           -8

Score:               +2

Output
• correspondences between 

substrings that maximize the 
score

Expensive: O(m2) for strings of length m (although can 
usually avoid worst case)

- 25 -
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Alignment of Genomes

• Given sets S and T, find the best alignment of all t in 
T to all s in S 
– Naïve algorithm embarrassingly parallel, O (|S| � |T|)

• Parallelize across alignments, but which ones?

Assembly (HipMer) Compare to reference Long Reads (diBELLA)

Align reads to contigs Align reads to some kind of 
reference

Align (long) reads to each 
other

O(100-200) x O(100-1M) O(100-200) 
x O(1B) for human 

O(10K) x O(10K)

some

- 26 -
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shared memory

local part of 
distributed
hash table A

Node i

private memory
Cache A

shared memory
local part of 
distributed
hash table A

Node j

private memory
Cache A

s

s

CACHE MISS on 
read s
CACHE HIT on 
read s

Use case 3: Global Read-Only phase
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Communication reduction via software caching
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Using .5D ideas on All-to-All Alignment

• n strings (“reads)
– Like molecules, stars in galaxies, etc.

• Most common: 2-way N-body

• Best algorithm is to divide n things into p groups??

for t timesteps
forall i1, …, ik

force[i1] += interact(particle[i1], …, particle[ik])
forall i

move(particle[i], force[i])

.......................................................................................

O(nk).

No!

- 29 -
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Communication Avoiding 2-way N-body 
(using a “1.5D” decomposition)

• Divide p into c groups 
• Replicate particles across groups
• Repeat: shift copy of n/(p*c) particles to the left within a group
• Reduce across c to produce final value for each particle
Total Communication: O(log(p/c) + log c) messages, 

O(n*(c/p+1/c)) words

............ ............ ............ ............ ............ ........................ ............

............ ............ ............ ............ ............ ........................ ............

............ ............ ............ ............ ............ ........................ ............

............ ............ ............ ............ ............ ........................ ............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

c

p/c

Driscoll, Georganas, Koanantakool, 
Solomonik, Yelick
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Less Communication..

Cray XE6; n=24K particles, p=6K cores

31

Dow
n is good

96% reduction in 
shift time (red)

Koanantakool et al
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Strong Scaling of 1.5D N-body
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4.4x

Up is good

Koanantakool et al
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Seed-And-Extend to Avoid Full n2

Seed	Extension

Read

Reference	Genome

Seed

AATA

AATA AATA AATA
0       52                             103                               512

9

GAATA-CTA-AATTTAT

G--AATA-C---TTTAT

AAATACCTAAAATTTAT

Candidate	Reference	Strings Score
15

11

17

AAATACCTAAAATTTATRead
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Use only “Reliable” K-mers
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Giulia Guidi, Marquita Ellis, Kathy Yelick, Aydin Buluc

Reliable K-mers occur often enough (2 or more times to 
find an overlap) but not too often
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Set alignment is a “Join” / Multiply
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Alignment cost for long (compute intensive) strings
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DIBELLA PERCENT TIME PER STAGE, COMMUNICATION SEPARATED, STRONG SCALING ON AWS 32 NODE GROUP

% Alignment Local Processing
% Alignment Exchange
% Overlap Local Processing
% Overlap Exchange
% Hash Table Local Processing
%Hash Table Exchange
% Bloom Filter Local Processing
%Bloom Filter Exchange

Local Processing includes packing and local 
computation.

Exchange refers to the many-to-many 
communication, currently implemented 
with MPI_Alltoallv. Exchange times are 
gray-scaled.

- 7 - Marquita Ellis et al
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Time breakdown on a Real HPC Machine

- 37 - Marquita Ellis et al
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Problems in Computational Biology

• Graphical Models (Machine Learning)
• Genome Assembly
• Many-to-Many Alignment
• Imaging

- 38 -

And how can we take ideas from numerical 
computing, linear algebra, and communication 
avoiding algorithms to this domain?
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Real-Time MRI Challenge

Compressed Sensing Approach by Mike Lustig et al
MRI results Wenwen Jiang

Time (min) Architecture
6.15 KNL
5.42 Ivy Bridge
4.47 Broadwell
4.31 Kepler
4.12 Haswell
3.71 Broadwell
3.16 Kepler
0.94 Pascal

3 min 
goal

Michael Driscoll HPC optimization

- 39 -



UNIVERSITY OF 
CALIFORNIA 

Office of
Science

Matrix-free (loop optimization) vs. Matrix-full

40

coil data              sample        KB kernel         FFT       preapodize    sens. maps               image

Loops Structured matrices Matrices

Operators as loop 
nests 

Operators as matrices with structure 
that compiler can optimize 

Operators as arbitrary 
sparse matrices

Michael Driscoll et al
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Domain-specific library with runtime optimizations

- 41 -
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Tree transformation with matrix 
pattern knowledge 

Michael Driscoll et al
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=                          ·

Acquired 
Signal

(known)

y

Imaging System 
Matrix

(modeled)

A

Intrinsic 
Image

(unknown)

x

Image Reconstruction as a 
Linear Inverse Problem

‹#›

Conjugate gradient: AHy = AHAx
Convex optimization: minimize | AHAx-AHy | + R(x)

Dominated by linear 
operator evaluation

Driscoll et al, IPDPS 2018
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Indigo: A DSL for Image 
Reconstruction

‹#›

General 
Matrix

FFT Operator

Identity
Operator

OneMatrix 
Operator

Matrices as building blocks

Product

SpMatrix

FFT

SpMatrix SpMatrix

Product

Product

Operators at DGAs of matrix operations

• Arithmetic: Sum, Product, KroneckerProduct, 
Adjoint, Scale.

• Structural: VerticalStack, HorizontalStack, 
BlockDiagonal.

• Derived properties, e.g., 1 nonzero per row

• Transformations use the properties
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Python-Based Domain-Specific Language (EDSL)

• Original Numpy code on Haswell: 87 sec/iteration
• Runtime optimization reorganize tree of operators (matrices 

+ FFTs) cognizant of matrix structure
• Library or custom matrix kernels

- 44 -
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Indigo Performance on GPUs, GPUs, Manycore
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43% Peak CPU,
7% KNL,
46% GPU
186x over Numpy

Phase-Space Microscopy (Liu et al 2017)

% peaks for for roofline, in this case memory bandwith peak

Ptychography (Marchesini 2016)

56% CPU peak, 
9% KNL, 
76% GPU. 
258x over Numpy.

56% CPU peak,
9% KNL, 

76% GPU. 
258x over Numpy.

Magnetic Particle Imaging (Konkle et al 2015)MRI reconstruction (Jiang, Lustig et al)

3 min goal (1 sec/iteration) Driscoll, PhD Thesis
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Summary
• Biology has both regular and irregular problems
• Some (alignment / assembly) have no floating point
• Even the regular all-to-all style algorithms look 

irregular when well-optimized (for computation)
• A bad machine (aka cloud) can make even compute-

intensive problems communication-limited
• Linear algebra appears in many forms
• Matrices are sparser than ever (and less regular)
• Communication avoidance: it’s not just for linear 

algebra
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Communication Hurts!
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