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What’s the most expensive operation on a computer?
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Communication Avoiding “2.5D” Matrix Multiply

Solomonick & Demmel

i Tk . : :
y « Tiling the iteration space

« 2D algorithm: never chop k dim
« 2.50r3D: Assume +is
}Z associative; chop k, which is >
y replication of C matrix
2] — j® Optimal for a given memory
X 7 size (replication factor)

| Tnatrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i
for j

for k
C[i,jl ... A[ik] ... BILk,j] ...
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But does communication matter in biology?

Isn’t biology embarrassingly parallel?
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Science Problems Fit Across the “Irregularity” Spectrum

Massive Nearest All-to-All Random

Independent Neighbor Simulations access, large
Jobs for Simulations data Analysis

Analysis and

Simulations

... often they fit in multiple categories
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Problems in Computational Biology

Graphical Models (Machine Learning)
Genome Assembly

Many-to-Many Alignment

Imaging

And how can we take ideas from numerical
computing, linear algebra, and communication
avoiding algorithms to this domain?
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HP-CONCORD on Brain fMRI data
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A1 = 0.48, A5 = 0.39, € = 3, A1 = 0.5, Ao = 0-.397 e =3, A1 = 0.48, A2 = 0.39, € = 3,
% of best score = 100 % of best score = 100 % of best score = 100

0 20000 40000 60000 80000

80000

A1 =0.64, A\ =0.13, k=1, A1 = 0.5425, A5 = 0.39, k=0, A1 =0.64, Ao =0.13, k=1,
% of best score = 75.03 % of best score = 73.45 % of best score = 75.03

0 20000 40000 60000 80000

80000

t=199.9, k = 4, t=199.9, k = 3, t=199.9, k=4
% of best score = 32.24 % of best score = 32.45 % of best score = 32.24
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Inverse Covariance Matrix Estimation (CONCORD)
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Sparse-Dense Matrix Multiply Too!

Execution Time vs. Replication Factor
(Edison, n=65536, nonzeroes per row=655, 12288 cores)

Gather C
Reduce C
Broadcast B
Broadcast A
Shift A
Replicate B
Replicate A
Idle
Computation

Execution Time (sec)

SturSt,.Co,.Co,.Cos.Cos.Cos.Cos.Cos.Cos.Cos.Cor.Cos.Cor.Cor.Cosr.Cor.Cor /0 0m “0m M0y 10, 11

N L N IR I M IS S N NS S N SIS IS IS IS IS

M g S & TG 35164705525,:57 80 8 8C 80 8T BCH6M616X6X6X16
4%?% §<56742 29 e e B FEFETEFETR 5

Algorithm - Replication Factor (c)

* Variety of algorithms that divide in or 2 dimensions
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100x Improvement

o A66kx172k B172kx66k (0.,0038% nnz, Cray XC30

400 I I I
—t+—1.5D Col A
350 + —t—1.5D Inner ABC _|
1.5D Col ABC
—t— 2 5D SUMMA ABC
300 | = /\
D '
9 250
8 200
n
o
= 150 |
>
b | e
50 F
O 3 ? =
384 768 1536 3072 6144

Machine size (# cores)
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Linear Algebra is important to Machine Learning too!

Logistic : : : : Graphical
: Dimensionality Clustering :
Regression, . Model Deep Learning
Reduction (e.g., (e.g., MCL, :
Support Structure (Convolutional
NMF, CX/CUR, Spectral ,
Vector PCA) Clustering) Learning (e.g., Neural Nets)
Machines 8 CONCORD)

Sparse Sparse Sparsé Matrix N EINCE Sparse -

Dense Dense

Matrix- Matrix- Times Sparse Matrix Dense Matrix

Sparse Dense Multiple Matrix Vector Matrix Matrix

Vector Vector Dense Vectors Product Product

(SpMSpV) (SpMV) (SpMM) spcemm) | (B2 | (sppme) (BLAS3)
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Problems in Computational Biology

* Graphical Models (Machine Learning)
* Genome Assembly
 Many-to-Many Alighment

* Imaging

And how can we take ideas from numerical
computing, linear algebra, and communication
avoiding algorithms to this domain?
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De novo Genome Assembly

 De novo genome assembly: Reconstruct an unknown genome
from a collection of short reads.

— Constructing a jigsaw puzzle without having the picture on the box

LT B AT T
R, Ravensburgersg-Puzzle

 Metagenome assembly: 100s-1000s of species
mixed together
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The HipMer genome assembly pipeline has 4 phases

1) K-mer Analysis
(synchronous) irregular all-to-all

2) Contig Generation

asynchronous remote insert
(aggregate and overlap) and get

3) Alignment

read-contig | ——— — —
- = 3SyYNCchronous remote insert and
|

alignments || i
—— i ]
. lookup (software caching)

contig-contig u 4) Scaffolding & Gap Closing
scaffolds s — — e— 3 SYNCFONOUS remote insert and

lookup (software caching)
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Alignment also uses hash tables

Graph construction, traversal, and all later stages are written in UPC to take advantage
of its global address space

Distributed
Input: k-mers and  Read k-mers &  Store k-mers & Hash table
their hlgh_quallty extensions extensions Shared Private
extensions <
4§ buckets entries
AAC CF ar 5 [ PR REE]] x|~
ATC TG Q — Key:| Val: a P
ACC GA o> AAC| CF 1
EEEEEEEEEEEEEEESHE O I:)2 Qo
TGA FC > 164 € |- x |78
GAT CF . 7]
AAT GF SR —
EEEEEEEEEEEEEEER > é%;\é?' >§$¥§ \C/:?BI\" y §
ATG CA [ [ & [ =
TCT GA . <
IIC;C;C;II:;\IIIIIIIII - u %
CTG AT —>| &6 A | o
TGC FA .
- > Key: | Val: | _ +| Key:| Val: A P
CTG| AT “1 TGC| FA 4 n
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Hash Table Use Case 1: Global Update-Only phase

11 . i
Full local buffer !!! P, stores the received data in a lock-free &
Local buffer for Pg communication-free way

4g€r Shared Private
e -
. &9{@ te - buckets entries

Ote Buffer local to P, P —— ACC | GA

l‘re

L Ns

L Ter :

— Local buffer for P, aul_ v =

[ L

= = :
(oo e |

- 5| Key: [ Val
“| CCG| FA

Local buffer for P,

Pl [—[ela ] -
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Hash Table Use Case 2: Global Reads & Writes phase

Connected
component:
Shared Private
buckets entries
GET el —>FEED-—{O8ED] * |~
— 'lE:'EE]l P,
. P, o
GET nmlp| —USED]-] x_|r &
. (/2]
GET melpy —>USEDIGEED] v | . &
—GUSEDL] P s
. <
GET el -—USED[] g
—SUSED o
GET mssmlp>| —SUSED [1-GSED:] - | -
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Strong scaling (human genome) on Cray XC30

Makes unsolvable

|deaI o] cached _—

4096 - . overall No IO cached problems solvable!
overall |10 cached —¢—
2048+ ... kmeranalysis —— |
contig generation
1024 scaffolding
% 10
c >Sl2
3
o 256
{p]
128
64
32
1920 3840 7680 15360 23040

Number of Cores

 Complete assembly of human genome in 4 minutes using 23K cores.
* 700x speedup over original Meraculous (took 2,880 minutes on large shared memory with
some Perl code); Some problems (wheat, squid, only run on HipMer version)
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HipMer Used in Large Plant Assemblies

Genome Red Cedar Ceratopteris richardii | Sugar Cane
Est. Genome Size 20GB 11GB 10GB
Assembly Size A\ 9.8 GB 6.8 GB 5.0 GB
Scaffold N50 A\ 794.2 KB 132.7 KB 56.1 KB
Contig N50 A 73.6 KB 17.1 KB 4.4 KB
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i {HENERGY Sciernce



MetaHipMer used for pan genome study

54 de novo assemblies of the grass Brachypodium distachyon
* Nearly 2x the number of genes found in any individual genome
 Many “shell genes" species-wide are “core genes” within a subpopulation.

Assembled Genome Size 271 Mb
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Sean Gordon (JGI, now Zymergen) D|fferent parameters over 10 samples

 MetaHipMer speed allows for parameter sweeps and produce higher quality results
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MetaHipMer for Understanding an environmental
microbiome

: 2. ey . T

s no b 3 \' sahht, L ey R & < & 2 . o v > XL o

(R - g - = > ~l . iy

, ol T A% T s FeRVTUC_ S R P D s

R \é L &K S5 T ¥ e R P Ve e A &
1 : — . R - = =R e W o - e - i s -~ e =
“v X \ .- X R <. & X ] % _{‘-’; : e : TN -y < - ; \\\ v i (‘_5‘ N o ”
VA \72}\ Yo7 s \; e v N -~ e T :’?-/, ,/-’..__- \:;, TR ¢ s s = v :/‘
Fo TN = T MO O AL 3 (N 7 AL TN 2F LT S ;

Best paper nominee for SC18 by the MetaHlpIVIer team Evangelos Georganas Rob
Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt, Andrew Tritt, Aydin Buluc,
Leonid Oliker, Katherine Yelick



Hardware and Programming Requirements

distributed hash tables all the way down...

Or at least a global address space

* High injection rate networks

* High bisection bandwidth with modest-
sized messages

* Remote (hardware) atomics

* Caching remote values sometimes useful
(can be done in software)

Leverages hash table features

* Asynchronous random-access

* Inserts reordered (write-only phase)

* Lookups may involve marking elements
(read-only phase)

e Good hash functions for load balance
(and locality if genome ~known)
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One-Sided Communication is Closer to Hardware

one-sided message host
CPU
address data payload —>
ided network
two-sided put message interface
message ID data payload
. memory
 Hardware does 1-sided communication

* Overhead for send/receive messaging is worse at exascale

= &S DEPARTMENTOP © Office of -23- Hargrove, Bonachea et al
) ENERGY science 9



Problems in Computational Biology

* Graphical Models (Machine Learning)
* Genome Assembly
 Many-to-Many Alighment

* Imaging

And how can we take ideas from numerical
computing, linear algebra, and communication
avoiding algorithms to this domain?
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What is (Pairwise) Alignment?

Input Output
e pair of sequences e correspondences between
« method for scoring a candidate substrings that maximize the
alignment score
ctgatcgtatctga ctgatcgtatc--tga
I I I 4 I I N
ctgcgaatccctga ctg--cgaatccctga
Match = +1 11 matches: +11
Mismatch = -1 1 mismatch: -1
Gap = -2 4 gaps: -8
Score: +2

Expensive: O(m?) for strings of length m (although can
usually avoid worst case)

U.S. DEPARTMENT OF Ofﬂce Of
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Alignment of Genomes

« Given sets S and T, find the best alighment of all tin’
Ttoallsin$S >ome

— Naive algorithm embarrassingly parallel, O (|S]| ® |T|)

Assembly (HipMer) Compare to reference Long Reads (diBELLA)
R N b P —— E——
Align reads to contigs Align reads to some kind of | Align (long) reads to each
reference other
O(100-200) x O(100-1Mm) O(100-200) O(10K) x O(10K)

X O(1B) for human

* Parallelize across alignments, but which ones?

.r"" U.S. DEPARTMENT OF Oﬁ'Ce Of
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Use case 3: Global Read-Only phase

Nodeii Node j
shared memory shared memory
local part of SJ local part of
distributed distributed
hash table A l hash table A
Cache A S Cache A
_____ P_”_‘_’?_t_e remory ____ _____p_rl_\{g_t_ce__mgrngry______

read s

U.S. DEPARTMENT OF Oﬁ:lce Of
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Communication reduction via software caching

8000

7000

6000

time (sec)
W B &)
o o o
o o o
o o o

2000

1000

Communication time during aligning phase

| | = seed Ibokup - no cache |
mm fetching targets - no cache
777 seed lookup w/ cache )
7 fetching targets w/ cache
.11.7x5peedup """"""""""""""""""""""""" i
1.8x speedu
N

no cache w/ cache no cache w/ cache no cache w/ cache
480 cores 1920 cores 7680 cores

* Software cache performance for human data set on Cray XC30
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Using .5D ideas on All-to-All Alignment

* n strings (“reads)
— Like molecules, stars in galaxies, etc.
 Most common: 2-way N-body

for t timesteps

forall i, ..., i,
forcel[i,] += interact(particle[i,], ..., particle[i.])

forall i \

move(particleli], force[i]) O(nk).

* Best algorithm is to divide n things into p groups??

*o RN - BN ¢ ¢ CURE IR CURE IR CURE IR CURE T oo ¢ B0AY- -+ AA8 No!
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Communication Avoiding 2-way N-body

using a “1.5D” decomposition
p/C —

* Divide p into c groups
* Replicate particles across groups
* Repeat: shift copy of n/(p*c) particles to the left within a group

* Reduce across c to produce final value for each particle
Total Communication: O(log(p/c) + log c) messages,
O(n*(c/p+1/c)) words

%, U.S.DEPARTMENTOF (ffice of 0. Driscoll, Georganas, Koanantakool,
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Less Communication..

Cray XE6; n=24K particles, p=6K cores

Execution Time vs. Replication Factor

0.045 T 1 | —T |

0.04 L mm Communication (Reduce) i
' mm Communication (Shift)

0.035 mm Computation _
0.03

0.025

0.02
96% reduction in
0.015 shift time (red)

0.01
0.005 I I
0
c=1 =2 c=4 =8 c=16 c=32
Replication Factor

Execution Time Per Timestep (sec)
poo3 sI umo(

Y U.S. DEPARTMENT OF Office of 31 Koanantakool et al
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Strong Scaling of 1.5D N-body

Parallel Efficiency on BlueGene/P (n=262,144)

o 1
S S
)
5 0.8 %
. (0]
> o
> 0.6 o
c
Q@
b= 0.4
m .
O *4.4X
=
© 0.2
[
(&

O ] ] ]

2048 4096 8192 16384 32768

Machine size (# cores)
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Seed-And-Extend to Avoid Full n?

Seed Extension

Reference Genome

0 52 103 512
| AATA "' /’EAATA/ -7 BATA-T
; P . Candidate Reference Strings Score
Seed [ il [ GAATA-CTA-AATTTAT | 15
AATA
Read [ G--AATA-C---TTTAT | 11

AAATACCTAAAATTTAT | 17 /

Read | AAATACCTAAAATTTAT |
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Use only “Reliable” K-mers

\
eagals

BERKELEY LAB

unique k-mers for each multiplicity (%)

60

55;
50
45
40
35
30;
2
20
15

10

\v

Reliable K-mers occur often enough (2 or more tin
find an overlap) but not too often

5.21E05

3.58E03

©

©

=
@ o
Lo 5§ «© v,

[N R © <

o

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
k-mers multiplicity in the reads (m)

Giulia Guidi, Marquita Ellis, Kathy Yelick, Aydin Buluc
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Set alignment is a “Join” [ Multiply

We reformulate the problem of overlap detection in terms of

a sparse matrix-matrix multiplication

! e e«
S S © & m R m R R
R1 . K1 : ° : : :

N Y I SO Ri| @ : @
R2 ® K| e: e | feeeeee- s L TT ERRRREES benenened
R3| ® & ® K3 : ° 0 R2 ® o
R4 ° Ka : o: | | S N C

................................... beeecdeeeli.] RS : @ @ : @
R5 o = K5 Y ) : IS ST I S R

KI K2 K3 K4 K5 Rl R2 R3 R4 RS R4 ()

R5| @ : ® . @

Heap size nnz(AT(:,i))
A\ =
& [:]

Our overlap detection was coupled a with state-of-the-art seed-and-extend
banded-alignment method [1] to obtain a pairwise read alignment algorithm

yyv
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Alignment cost for long (compute intensive) strings

A
i

frreeeer

BERKELEY LAB

PERCENTAGE OF TOTAL

DIBELLA PERCENT TIME PER STAGE, COMMUNICATION SEPARATED, STRONG SCALING ON AWS 32 NODE GROUP
B % Alignment Local Processing
B % Alignment Exchange
M % Overlap Local Processing
M % Overlap Exchange
% Hash Table Local Processing
B %Hash Table Exchange
M % Bloom Filter Local Processing

33.65%

B %Bloom Filter Exchange

0.42% Local Processing includes packingand local
computation.

Exchange refers to the many-to-many
communication, currently implemented
10.65% with MPI_Alltoallv. Exchange times are
gray-scaled.

13.34%

11.44%

2 4 8 16 32
NO. NODES (16 MPI RANKS PER NODE)

U.S. DEPARTMENT OF Ofﬁce Of
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Time breakdown on a Real HPC Machine

7000 H|/O (Output)
m1/0 (Input)

6000 mAlignment Communication
BOverlap Communication

5000 Bk-mer Analysis Communication

Alignment Computation

MOverlap Computation

4000 Bmk-mer Analysis Computation
—Total Elapsed Time

3000

2000

1000

O |

64 128 256 512 1024

U.S. DEPARTMENT OF Ofﬂce Of
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Problems in Computational Biology

* Graphical Models (Machine Learning)
* Genome Assembly
 Many-to-Many Alighment

* Imaging

And how can we take ideas from numerical
computing, linear algebra, and communication
avoiding algorithms to this domain?
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Real-Time MRI Challenge

Time (min)  Architecture
6.15 KNL

5.42 Ivy Bridge
. 4.47 Broadwell
3 min 4.31 Kepler
g0a| 412 Haswell
3.71 Broadwell
g;i E::g Compressed Sensing Approach by Mike Lustig et al
Michael Driscoll HPC optimization MRI results Wenwen Jiang

U.S. DEPARTMENT OF Ofﬂce Of
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Matrix-free (loop optimization) vs. Matrix-full

coil data sample KB kernel FFT  preapodize sens. maps image

Operators as loop  Operators as matrices with structure Operators as arbitrary
nests that compiler can optimize sparse matrices

U.S. DEPARTMENT OF Oﬁ'Ce Of

NERGY Science Michael Driscoll et al



Domain-specific library with runtime optimizations

HPC Numpy CPU
Scientist Expert | VKL
‘ Transformation CuSt()mCPU \ KNL

Recipe

%; * C{%; CUDA
GPU
CustomGPU

Structured Optimized
Linear Operator Operator

Backend Platform

Tree transformation with matrix
pattern knowledge

U.S. DEPARTMENT OF Ofﬂce Of
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Image Reconstruction as a

Acgu.red Imaging System  Intrinsic
Signal Matrix Image
(known) (modeled)  (unknown)

Yy A X

Dominated by linear
operator evaluation

Conjugate gradient: AMy = A"Ax
Convex optimization: minimize | AfAx-ARy | + R(x)

Py us. o Office of

JENERGY science Driscoll et al, IPDPS 2018
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Indigo: A DSL for Image

Matrices as building blocks Operators at DGAs of matrix operations
e Arithmetic: Sum, Product, KroneckerProduct,
& General ..
, Adjoint, Scale.
§ Matrix

e Structural: VerticalStack, HorizontalStack,
BlockDiagonal.

Identity
Operator Product
Product
OneMatrix SpMatrix

Operator
SpMatrix SpMatrix
* Derived properties, e.g., 1 nonzero per row

FFT Operator

* Transformations use the properties

U.S. DEPARTMENT OF Ofﬂce Of
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Python-Based Domain-Specific Language (EDSL)

Optimized MRI Pipeline

1.80 BSpMM-maps |
% 160 m IFFT S
£ 1.20 . A
° m SpMM - grid
£ 100 -
g 0.80 FET —
B 060 m SpMM - maps
5 0. e
5 0.40
a

0.20 e ——

0.00

mkl custom mkl custom cusparse custom
Haswell Xeon Phi (KNL) GPU (Pascal)

* Original Numpy code on Haswell: 87 sec/iteration

* Runtime optimization reorganize tree of operators (matrices
+ FFTs) cognizant of matrix structure

e Library or custom matrix kernels

U.S. DEPARTMENT OF Ofﬁce Of
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Indigo Performance on GPUs, GPUs, Manycore

% peaks for for roofline, in this case memory bandwith peak

MRI reconstruction (Jiang, Lustig et al)

Magnetlc Particle Imagmg (Konkle et al 2015)

56% CPU peak,
9% KNL,

76% GPU.

258x over Numpy.

56% CPU peak,
9% KNL,

76% GPU.

258x over Numpy.

43% Peak CPU,
7% KNL,

46% GPU

186x over Numpy

U.S. DEPARTMENT OF Office of 45

B;ELE\Y'LM Q/f’ ENFRGH( Sriere Driscoll, PhD Thesis



* Biology has both regular and irregular problems
* Some (alignment / assembly) have no floating point

* Even the regular all-to-all style algorithms look
irregular when well-optimized (for computation)

* A bad machine (aka cloud) can make even compute-
intensive problems communication-limited

* Linear algebra appears in many forms
 Matrices are sparser than ever (and less regular)

« Communication avoidance: it’s not just for linear
algebra

Py Us-D Office of

& i .S. DEPARTMENT OF
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Communication Hurts!
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