
Hatem Ltaief, George Turkiyyah & David Keyes
Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology

Hierarchical Algorithms on

Hierarchical Architectures

To take away (1)
n To better exploit emerging architectures, we need

new implementations of linear, least squares,
eigenvalue, and singular value solvers that
- offer tunable accuracy-time tradeoffs
- exploit hierarchy of precisions
- may require more flops but offer more

concurrency (and thus complete faster)
n Besides exposing more concurrency, we must

- remove synchrony and over-ordering
- dwell as high as possible on the memory hierarchy

To take away (2)
n With such new solvers, we can extend many

applications that possess
- memory capacity constraints (e.g., geospatial

statistics, PDE-constrained optimization)
- energy constraints (e.g., remote telescopes)
- real-time constraints (e.g., wireless commun)
- running time constraints (e.g., chem, materials,

genome-wide associations)

To take away (3)
n If you can speed up

linear algebra
kernels, “the world’s
your oyster, which
you with sword will
open” *

* Shakespeare (1600), The Merry Wives of Windsor, Act II, Scene II

n This can all be illustrated in applications
- but not all in 30 minutes J

n Hope it highlights the relevance of this workshop

Globe Theatre

dense tiles
Cholesky: O(n3)

tile low rank
Cholesky: O(kn2)

TILE LOW-RANK ALGORITHMS CHOLESKY FACTORIZATION SOFTWARE STACK

A collaboration of With support from Sponsored by

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

HIERARCHICAL	COMPUTATIONS	ON	MANYCORE	ARCHITECTURES	

The Hierarchical Computations on Manycore Architectures (HiCMA) library aims to redesign existing dense linear algebra
libraries to exploit the data sparsity of the matrix operator. Data sparse matrices arise in many scientific problems (e.g.,
in statistics-based weather forecasting, seismic imaging, and materials science applications) and are characterized by
low-rank off-diagonal tile structure. Numerical low-rank approximations have demonstrated attractive theoretical bounds,
both in memory footprint and arithmetic complexity. The core idea of HiCMA is to develop fast linear algebra
computations operating on the underlying tile low-rank data format, while satisfying a specified numerical accuracy and
leveraging performance from massively parallel hardware architectures.

HiCMA 0.1.0
•  Matrix-Matrix Multiplication
•  Cholesky Factorization/Solve
•  Double Precision
•  Task-based Programming Models
•  Shared and Distributed-Memory

Environments
•  Support for StarPU Dynamic

Runtime Systems
•  Testing Suite and Examples

CURRENT RESEARCH
•  LU Factorization/Solve
•  Schur Complements
•  Preconditioners
•  Hardware Accelerators
•  Support for Multiple Precisions
•  Autotuning: Tile Size, Fixed Accuracy and

Fixed Ranks
•  Support for OpenMP, PaRSEC and Kokkos
•  Support for HODLR, H, HSS and H2

GEOSPATIAL STATISTICS
N = 20000, NB = 500, acc=109, 2D problem sq. exp.

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/hicma

PERFORMANCE RESULTS CHOLESKY FACTORIZATION – DOUBLE PRECISION – CRAY XC40 WITH TWO-SOCKET, 16-CORE HSW

Performance Results

State-of-the-Art

A collaboration of With support from Sponsored by

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

A	QDWH-Based	SVD	So=ware	Framework	on	Distributed-Memory	Manycore	Systems		

The KAUST SVD (KSVD) is a high performance software framework for computing a dense SVD on distributed-memory
manycore systems. The KSVD solver relies on the polar decomposition using the QR Dynamically-Weighted Halley
algorithm (QDWH), introduced by Nakatsukasa and Higham (SIAM Journal on Scientific Computing, 2013). The
computational challenge resides in the significant amount of extra floating-point operations required by the QDWH-based
SVD algorithm, compared to the traditional one-stage bidiagonal SVD. However, the inherent high level of concurrency
associated with Level 3 BLAS compute-bound kernels ultimately compensates the arithmetic complexity overhead and
makes KSVD a competitive SVD solver on large-scale supercomputers.

The Polar Decomposition
Ø  A = UpH, A in Rmxn (m≥n) , where Up is

orthogonal Matrix, and H is symmetric
positive semidefinite matrix

Application to SVD
Ø  A = UpH
 = Up(VΣVT) = (UpV)ΣVT

 = UΣVT

QDWH Algorithm
Ø  Backward stable algorithm for computing the

QDWH-based SVD
Ø  Based on conventional computational kernels,

i.e., Cholesky/QR factorizations (≤ 6 iterations
for double precision) and GEMM

Ø  The total flop count for QDWH depends on
the condition number�of the matrix	

KSVD 1.0
Ø  QDWH-based Polar Decomposition
Ø  Singular Value Decomposition
Ø  Double Precision
Ø  Support to ELPA Symmetric Eigensolver
Ø  Support to ScaLAPACK D&C and MR3

 Symmetric Eigensolvers
Ø  ScaLAPACK Interface / Native Interface
Ø  ScaLAPACK-Compliant Error Handling
Ø  ScaLAPACK-Derived Testing Suite
Ø  ScaLAPACK-Compliant Accuracy

Current Research
Ø  Asynchronous, Task-Based QDWH
Ø  Dynamic Scheduling
Ø  Hardware Accelerators
Ø  Distributed Memory Machines
Ø  Asynchronous, Task-Based
 QDWH-SVD
Ø  QDWH-based Eigensolver
 (QDWH-EIG)
Ø  Integration into PLASMA/

MAGMA

Advantages
Ø  Performs extra flops but nice flops
Ø  Relies on compute intensive kernels
Ø  Exposes high concurrency
Ø  Maps well to GPU architectures
Ø  Minimizes data movement
Ø  Weakens resource synchronizations

Download the software at http://github.com/ecrc/ksvd

Chameleon 1.9

A collaboration of With support from Sponsored by

A HIGH PERFORMANCE STENCIL FRAMEWORK USING
WAFEFRONT DIAMOND TILING

.".". 1 1 .".". 2 2 .".". N ! 1 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 1 2 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 2

.".". 1 .".". 2 .".". N N 1 ! 1 1 .".". 2 2 .".". L L

.".". 2 .".". N N 1 1 ! 1 1 .".". 2 2 .".". L L

.".". 2 .".". N N 1 1 .".". ! 1 1 .".". 2 2 .".". L L

.".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". ! 1 1 .".". 2 2 .".". L L

.".". N N 1 1 .".". 2 .".". ! 1 1 .".". 2 2 .".". L L

.".". N 1 1 .".". 2 .".". N ! 1 1 .".". 2 2 .".". L L

.".". 1 1 .".". 2 .".". N N ! 1 1 .".". 2 2 .".". L L

a)"Threads'"block"decomposition"per"time"step b)"Cache"block

d)"Diamond"viewc)"Regular"wavefront"blocking

"""f)"Block"decomposition"along"Xe)"FixedFexecutionFtoFdata"wavefront"blocking

1""""""""""""2"""""""""""""3"""""…""""L

1
""
""2
"""
3
"…
"N

Z

YT

X

YZ

Z

T

Z

T

X

T

Y

T

The Girih framework implements a generalized multi-dimensional intra-tile parallelization scheme for shared-cache
multicore processors that results in a significant reduction of cache size requirements for temporally blocked stencil
codes.. It ensures data access patterns that allow efficient hardware prefetching and TLB utilization across a wide range
of architectures. Girih is built on a multicore wavefront diamond tiling approach to reduce horizontal data traffic in favor of
locally cached data reuse. The Girih library reduces cache and memory bandwidth pressure, which makes it amenable to
current and future cache and bandwidth-starved architectures, while enhancing performance for many applications.

STENCIL COMPUTATIONS
•  Hot spot in many scientific codes
•  Appear in finite difference, element, and volume

discretizations of PDEs
•  E.g., 3D wave acoustic wave equation:

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/girih

PERFORMANCE RESULTS 8TH ORDER IN SPACE AND 2ND ORDER IN TIME – DOUBLE PRECISION

MULTI-DIMENSIONAL INTRA-TILE PARALLELIZATION

Thread assignment in space-time dimensions

i

k

j

7-point stencil 25-point stencil

Auto%tuning)

MPI)comm.)
wrappers)

Parameterized)
8ling)

Run8me)system)

Stencil)
Kernels)

+)
Specs.)

SOFTWARE INFRASTRUCTURE

Girih system components

GIRIH 1.0.0
•  MPI + OpenMP
•  Single and double precision
•  Autotuning
•  Short and long stencil ranges in

space and time
•  Constant/variable coefficients
•  LIKWID support for profiling

CURRENT RESEARCH
•  Matrix power kernels
•  Overlapping domain decomposition
•  GPU hardware accelerators:

•  OpenACC / CUDA
•  Out-of-core algorithms
•  Dynamic runtime systems
•  Extension to CFD applications

Diamond tiling versus Spatial Blocking on SKL Diamond tiling performance across Intel x86 generations •  Domain size: 512 x 512 x 512
•  # of time steps: 500
•  25-point star stencil
•  Dirichlet boundary conditions
•  Two-socket systems (Mem./L3):
- 8-core Intel SNB (64GB/20MB)
- 16-core Intel HSW (128GB/40MB)
- 28-core Intel SKL (256GB/38MB)
•  Intel compiler suite v17 with

AVX512 flag enabled
•  Memory affinity with numatcl

command
•  Thread binding to cores with

sched_affinity command

A collaboration of With support from Sponsored by

Centre	de	recherche	
BORDEAUX	– SUD-OUEST

PARALLEL HIGH PERFORMANCE UNIFIED FRAMEWORK FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The Exascale GeoStatistics project (ExaGeoStat) is a parallel high performance unified framework for computational
geostatistics on many-core systems. The project aims at optimizing the likelihood function for a given spatial data to provide an
efficient way to predict missing observations in the context of climate/weather forecasting applications. This machine learning
framework proposes a unified simulation code structure to target various hardware architectures, from commodity x86 to GPU
accelerator-based shared and distributed-memory systems. ExaGeoStat enables statisticians to tackle computationally
challenging scientific problems at large-scale, while abstracting the hardware complexity, through state-of-the-art high
performance linear algebra software libraries.

ExaGeoStat 0.1.0
• Large-scale synthetic geo-

spatial datasets generator

• Maximum Likelihood
Estimation (MLE)
- Synthetic and real datasets

• A large-scale prediction tool
for unknown measurements
on known locations

Current Research
• ExaGeoStat R-wrapper

package

• Tile Low Rank (TLR)
approximation

• NetCDF format support

• PaRSEC runtime system

• In-situ processing

ExaGeoStat Dataset Generator
• Generate 2D spatial Locations using uniform

distribution.
• Matérn covariance function:

! "; $ = 	 $'
(($*+')-($*)

	 "
$(

$*
.$*

"
$(

• Cholesky factorization of the covariance matrix:
∑ $ = 0	. 02�
�

• Measurement vector generation (Z):
4 = 	0	. 5, 				 57	~9(:, ')

ExaGeoStat Maximum Likelihood Estimator
• Maximum Likelihood Estimation (MLE) learning function:

ℓ $ = −=
(
>?@ (A −	'

(
	>?@	 ∑ $�� − 	'

(
	42 	∑ $ B'4�

�

Where C $ 	is a covariance matrix with entries
C7D = ! E7 − ED; $, 7, D = ',… , =

• MLE prediction problem
4'
4(

~	9GH=	(
I'
I(

	 ,
J'' J'(
J(' J((

)

With J'' ∈ 	LG×G, J'(LG×=, J(' ∈ 	L=×G,
and J((∈ 	L=×=

• The associated conditional distribution
where 4'	represents a set of unknown
measurements :
4'|4(~	9G(I' + J'(J((

B'	 4(− 	I(, J'' 	− J'(J((
B'J(')

Performance Results (MLE)
Two-socket shared memory Intel x86 architectures

Figure: An example of 400
points irregularly distributed in
space, with 362 points (ο) for
maximum likelihood estimation
and 38 points (×) for prediction
validation.

Figure: Mean square error for predicting
large scale synthetic dataset.

Figure: Two different examples of real datasets (wind speed dataset in the middle east region
and soil moisture dataset coming from Mississippi region, USA).

Intel two-socket Haswell + NVIDIA K80 Cray XC40 with two-socket, 16 cores Haswell

DOWNLOAD THE LIBRARY AT http://github.com/ecrc/exageostat

ExaGeoStat Predictor
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y

20K 40K 60K 80K 100K

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Spatial Locations (n)

M
ea

n
S

qu
ar

e
E

rr
or

 (M
S

E
)

Soil Moisture (SM) in the Mississippi region, USA

����	
��
 ����	
��

����	
��

���	
��

0

200

400

600

800

1000

1200

Ti
m

e
(s

ec
s)

Spatial Locations (n)

����	

 ���	

����	

����	

�����	

0

50

100

150

200

250

300

350

400

450

500

Ti
m

e
(s

ec
s)

Spatial Locations (n)

���������(�)������	�
�(��
��

���()�
��

���(�

������)�

(�)�����)�

0

200

400

600

800

1000

1200

Ti
m

e
(s

ec
s)

Spatial Locations (n)

A collaboration of With support from Sponsored by

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

Place your text here A HIGH PEFORMANCE MULTI-OBJECT ADAPTIVE OPTICS FRAMEWORK
FOR GROUND-BASED ASTRONOMY

The Multi-Object Adaptive Optics (MOAO) framework provides a comprehensive testbed for high performance
computational astronomy. In particular, the European Extremely Large Telescope (E-ELT) is one of today’s most challenging
projects in ground-based astronomy and will make use of a MOAO instrument based on turbulence tomography. The
MOAO framework uses a novel compute-intensive pseudo-analytical approach to achieve close to real-time data processing
on manycore architectures. The scientific goal of the MOAO simulation package is to dimension future E-ELT instruments
and to assess the qualitative performance of tomographic reconstruction of the atmospheric turbulence on real datasets.

DOWNLOAD THE SOFTWARE AT h6p://github.com/ecrc/moao	

THE MULTI-OBJECT ADAPTIVE OPTICS TECHNIQUE

Single conjugate AO concept Open-Loop tomography concept Observing the GOODS South
cosmological field with MOAO

MOAO 0.1.0
•  Tomographic Reconstructor Computation
•  Dimensioning of Future Instruments
•  Real Datasets
•  Single and Double Precisions
•  Shared-Memory Systems
•  Task-based Programming Models
•  Dynamic Runtime Systems
•  Hardware Accelerators

CURRENT RESEARCH
•  Distributed-Memory Systems
•  Hierarchical Matrix Compression
•  Machine Learning for Atmospheric Turbulence
•  High Resolution Galaxy Map Generation
•  Extend to other ground-based telescope projects

PERFORMANCE RESULTS TOMOGRAPHIC RECONSTRUCTOR COMPUTATION – DOUBLE PRECISION

High res. map of the quality of
turbulence compensation obtained
with MOAO on a cosmological field

THE PSEUDO-ANALYTICAL APPROACH

System
Parameters

Turbulence
Parameters

matcov Cmm Ctm ToR

matcov Cmm Ctm

Ctt

Cee CvvBLAS BLAS

Inter-
sample

R

ToR computation

Observing sequence

•  Compute the tomographic error:
 Cee = Ctt - Ctm RT – R Ctm

T + R Cmm RT
•  Compute the equivalent phase map:

 Cvv = D Cee DT
•  Generate the point spread function image

Two-socket 18-core Intel HSW – 64-core Intel KNL – 8 NVIDIA GPU P100s (DGX-1)

•  Solve for the
tomographic
reconstructor R:
R x Cmm = Ctm

This is one tomographic
reconstructor every 25

seconds!

0

5

10

15

20

25

30

35

40

45

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000110000

TF
lo

ps
/s

matrix size

DGX-1 peak
DGX-1 perf

KNL perf
Haswell perf

0

100

200

300

400

500

600

700

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000110000

tim
e(

s)

matrix size

DGX-1
KNL

Haswell

4 8 16 32
Number of physical cores

8

16

32

64

128

256

512

T
im

e,
se

co
nd

s

SVD

RRQR

RSVD

125 343 1000 2744
Matrix size, thousands

-2

-1

0

1

2

3

4

5

6

T
im

e
in

se
co

nd
s,

lo
g 2

⌧ = 10�3

⌧ = 10�6

⌧ = 10�12

of nodes

64

256

1024

729 1331 2197 4096 9261
Matrix size, thousands

1

2

3

4

5

6

T
im

e
in

se
co

nd
s,

lo
g 2

⌧ = 10�9

of nodes

1024

4096

6084

With support from Sponsored by

Centre	de	recherche	
BORDEAUX	– SUD-OUEST

Software for Testing Accuracy, Reliability and
Scalability of Hierarchical computations

STARS-H is a high performance parallel open-source package of Software for Testing Accuracy, Reliability and Scalability
of Hierarchical computations. It provides a hierarchical matrix market in order to benchmark performance of various libraries
for hierarchical matrix compressions and computations (including itself). Why hierarchical matrices? Because such matrices
arise in many PDEs and use much fewer memory, while requiring less flops for computations. There are several hierarchical
data formats, each one with its own performance and memory footprint. STARS-H intends to provide a standard for assessing
accuracy and performance of hierarchical matrix libraries on a given hardware architecture environment. STARS-H currently
supports the tile low-rank (TLR) data format for approximation on shared and distributed-memory systems, using MPI, OpenMP
and task-based programming models. STARS-H package is available online at https://github.com/ecrc/stars-h.

Roadmap of STARS-H
• Extend to other problems in a matrix-

free form.
• Support HODLR, HSS, ℋ and ℋ"

data formats.
• Implement other approximation

schemes (e.g., ACA).
• Port to GPU accelerators.
• Apply other dynamic runtime systems

and programming models (e.g.,
PARSEC).

STARS-H 0.1.0
• Data formats: Tile Low-Rank (TLR).
• Operations: approximation, matrix-

vector multiplication, Krylov CG solve.
• Synthetic applications in a matrix-free

form: random TLR matrix, Cauchy
matrix.

• Real applications in a matrix-free
form: electrostatics, electrodynamics,
spatial statistics.

• Programming models: OpenMP, MPI
and task-based (StarPU).

• Approximation techniques: SVD,
RRQR, Randomized SVD.

TLR Approximation of 2D problem on a two-socket
shared-memory Intel Haswell architecture

3D problem on different two-socket shared-
memory Intel x86 architectures

3D problem on a different amount of nodes (from 64 up to 6084) of a distributed-memory
CRAY XC40 system for a different error threshold #

Matrix Kernels
• Electrostatics (one over distance):

$%& =
1
)%&

• Electrodynamics (cos over distance):

$%& =
cos(.)%&)	

)%&
• Spatial statistics (Matern kernel):

$%& =
2234
Γ 6 26�)%&

8
4
94 26�)%&

8
• And many other kernels …

Heatmap of ranks (2D problem)

Sample Problem Setting
Spatial statistics problem for a quasi
uniform distribution in a unit square
(2D) or cube (3D) with exponential
kernel:

$%& = :
3;<=
> ,

where 8 = 0.1 is a correlation length
parameter and)%& is a distance
between B-th and C-th spatial points.

20 40 60 80 100 120 140 160 180 200
Matrix size, thousands

100

101

102

T
im

e
in

se
co

nd
s

Sandy Bridge

Ivy Bridge

Haswell

Broadwell

Skylake

In collaboration with

in NVIDIA cuBLAS in Cray LibSci

Intel s/w for Aramco

https://github.com/ecrc/

Two universes of NLA exist side-by-side

c/o Instageeked.com
* Global indices *
do i {

do j {
for (i,j) in S do op

}
}

Flat Hierarchical
* Local indices *
for matrix blocks (k,l)

do i {
do j {

for (i,j) in Sk,l do op
}

}

Algorithms were once flat (Cholesky, 1910)

triangular recurrence

Architectures were flat, as well (vN, 1945)

Since 1985: “horizontal” structure…

c/o Computer History Museum, Mountain View, CA

128-node hypercube

Today’s “horizontal” structure…
Cray’s “Aries” network
n copper within a cabinet
n optical between cabinets
n scalability of a fat tree
n cost of a torus
n maximum of three hops

between any pair of the
200,000 Xeon cores in
KAUST’s Cray XC40

c/o Cray

dragonfly
network

And now add: “vertical” structure
Intel’s
256-core
Knights
Landing
Processor
n nested

levels of
cache

n MCDRAM
n DDR4

SDRAM

all within a
3 Tflop/s
node

c/o M. Farhan, KAUST

Two decades of evolution

ASCI Red at Sandia
1.3 TF/s, 850 KW

1997

Cavium ThunderX2
~ 1.1 TF/s, ~ 0.2 KW

2017

3.5 orders of
magnitude

Hierarchies do not necessarily match!

As humans managing implementation complexity,
we would all prefer:

● hierarchical algorithms on flat architectures

or even (suboptimally)
● flat algorithms on hierarchical architectures

Reality

We go to exascale
with the architectures we have,

not with the architectures we want. *

● A 4,000-node subset of ORNL’s Summit sustains 1.88
ExaOp/s of mixed precision on a genomics application

● Majority of these operations are half-precision (16-bit
floating point) NVIDIA tensor-core matrix-matrix
multiplies

* paraphrase of D. Rumsfeld, Cable News Network, 8 Dec 2004.

Now: hierarchy of precisions

Now: hierarchy of ranks

Architectural challenge
● Memories are hierarchical in an increasing

number of levels
- stronger-than-ever incentive to tune algorithms

for register & cache reuse
- additional flop/s cost little, within a given

workingset of data that fits in highest level
cache

- more computation leading to less
communication and/or synchronization may be
a good trade-off

It’s not just bandwidth; it’s energy

● Access SRAM (registers, cache) ~ 10 fJ/bit

● Access DRAM on chip ~ 1 pJ/bit

● Access HBM/MCDRAM (few mm) ~ 10 pJ/bit

● Access DDR3 (few cm) ~ 100 pJ/bit

similar ratios for latency as for bandwidth and
energy

~ 104 advantage in energy for staying in cache!

Algorithmic imperatives
1) Reside “high” on the memory hierarchy

◆ as close as possible to the processing elements
2) Reduce communication and synchrony

◆ in frequency and/or span
3) … SIMT-style batching … algorithm-based
fault tolerance … etc.

Widely applicable strategies

1) Employ dynamic runtime systems based on

directed acyclic task graphs (DAGs)

◆ e.g., Charm++, Quark, StarPU, Legion, OmpSs, HPX,

ADLB, Argo, ParSec

◆ dynamic scheduling capabilities in OpenMP

2) Exploit data sparsity of hierarchically low-rank

type

◆meet the “curse of dimensionality” with the “blessing of

low rank”

3) Code libraries to various architecture while

presenting high-level application programmer

interface

1) Taskification based on DAGs
n Advantages

◆ remove artifactual synchronizations in the form
of subroutine boundaries

◆ remove artifactual orderings in the form of pre-
scheduled loops

◆ expose more concurrency
n Disadvantages

◆ pay overhead of managing task graph
◆ potentially lose some memory locality

2) Hierarchically low-rank operators
n Advantages

◆ shrink memory footprints to live higher on the
memory hierarchy
■ higher means quick access (↑ arithmetic intensity)

◆ reduce operation counts
◆ tune work to accuracy requirements

■ e.g., preconditioner versus solver
n Disadvantages

◆ pay cost of compression
◆ not all operators compress well

3) Code to the architecture
n Advantages

◆ tiling and recursive subdivision create large
numbers of small problems that can be marshaled
for batched operations on GPUs and MICs
■ amortize call overheads
■ polyalgorithmic approach based on block size

◆ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

n Disadvantages
◆ code is more complex
◆ code is architecture-specific at the bottom

1) Reduce over-ordering and synchronization
through DAGs, ex.: generalized eigensolver

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs
● Diagram shows a

dataflow ordering of the
steps of a 4×4 symmetric
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges
are data dependencies

● Time is vertically
downward

● Wide is good; short is
good

1:1

 2:4

3:9

4:4

5:11

6:8

 7:6

8:5

9:7

10:4

11:4

12:2

13:2

14:3

15:3

16:1

 17:2

18:1

19:1

20:1

21:1

22:1

23:1

24:1

2) Reduce memory footprint and
operation complexity with low rank

• Replace dense blocks with hierarchical
representations when they arise during matrix
operations
– use high accuracy (high rank, but typically less than

full) to build “exact” solvers
– use low accuracy (low rank) to build preconditioners

• Tune block structure and rank parameters to
variety of hardware configurations

Key tool: hierarchical matrices
• [Hackbusch, 1999] : off-diagonal blocks of typical

differential and integral operators have low effective rank
• Similarly: Schur complements of the above, covariance

matrices from statistics, Hessians from optimization, etc.
• By exploiting low rank, k , memory requirements and

operation counts approach optimal in matrix dimension
n:
– polynomial in k
– lin-log in n
– constants carry the day

• Such hierarchical representations navigate a compromise
– fewer blocks of larger rank (“weak admissibility”) or
–more blocks of smaller rank (“strong admissibility”)

Recursive construction of an H-matrix

Step 0 Step 1 Step 2 Step 3

Specify two parameters:
n Block size acceptably

small to handle
densely

n Rank acceptably
small to represent
block

Until each block is
acceptably small:
n Is rank acceptably

small?
n If not, subdivide

block
Take union of leaf blocks

Tree-like structures of
“Standard (strong)” vs. “weak” admissibility

weak admissibilitystrong admissibility
after Hackbusch, et al., 2003

Hierarchically low-rank “renaissance”

c/o Rio Yokota (Tokyo Tech/KAUST)

Must address the tension between
n highly uniform vector, matrix, and general SIMT

operations
n hierarchical algorithms with tree-like data structures and

scale recurrence

H-
matrices

GPU,
MIC

Hierarchical algorithms and extreme scale

Tile Low Rank (TLR) is a compromise
between optimality and complexity

Example: Cholesky

Panel algorithm
(LAPACK’s POTRF)

Left- and right-looking variants, column-blocked for BLAS3
Decreasing concurrency
Artifactual over-ordering

Tile algorithm
(PLASMA, MAGMA, Chameleon)

Implemented with DAG-based scheduling

Panel

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

Performance evolution of dense Cholesky

(first factor based on tiling;
successive factors, 2007-2017, based on Top500 hardware generations)

Performance evolution of dense Cholesky

HiCMA vs. Intel MKL on shared memory
Geospatial statistics (Gaussian kernel) to accuracy 1.0e-8
n Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
n Two generations of linear algebra (classical dense and tile low rank)

Red arrows:
speedups from

hardware,
same algorithm

Green arrows:
speedups from

algorithm,
same hardware

Blue arrow:
From both

classical

tile low rank

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,
Europar 2018.

Nearly 2 orders of
magnitude for 0.5M size
matrix on 16 nodes

HiCMA vs. ScaLAPACK on distributed memory

EuroPar 2018

Memory footprint for DP matrix of size 1M

4 TB

EuroPar 2018

1 to 2 orders of
magnitude less,
depending upon

accuracy

HiCMA on distributed memory
Geospatial statistics
(Gaussian kernel) to
accuracy 1.0e-8
n Cray XC40

(“Shaheen”, 32
Haswell cores per
node)

n Range of problem
sizes and core
count

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,
Europar 2018.

Missing upper
end: insufficient

memory
Missing lower

end: insufficient
work

Execution traces
Chameleon: Dense DPOTRF time 18.1s

4 nodes of Shaheen with a matrix size of 54K

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,
Europar 2018.

Execution traces
HiCMA: TLR DPOTRF time 1.8s (10X faster)

4 nodes of Shaheen with a matrix size of 54K

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,
Europar 2018.

So far, just Tile Low Rank…

Now: general H-matrices

n First advance: adopt H 2 matrix structure
n Second advance: use randomized SVD

(Halko, Martinsson & Tropp, 2009) to form
the low-rank blocks at the leaves
- an easy, flop-intensive GEMM-based flat

algorithm

n Third advance: implement using “batches”
on GPUs/multi-GPUs

H 2 hierarchical matrix representation

1D 2D

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS 45:3 (2019)

Hierarchical MatVec execution time

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS 45:3 (2019)

Linear

matrix sizes from 16K to 1M

Hierarchical MatVec bandwidth

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS 45:3 (2019)

Theoretical peak

Hierarchical compression

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS 45:3 (2019)

Adaptive Randomized Approximations (ARA)

matrices

Comparison with Jacobi (Givens) SVD

Greater
advantage

at larger size
More than 2 orders

of magnitude
for DP

Hierarchical Adaptive Randomized Approximation
(HARA)

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, submitted to SISC (2019)

Performance of HARA on GPU
Matrix sizes from 16K to 256K; accuracies 10-2 to 10-4

Time and no. samples to compress

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, submitted to SISC (2019)

H matrix-H matrix multiplication

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, submitted to SISC (2019)

Fast matvecs ⇒ fast approx inversions with Newton-Schulz

c/o Rio Yokota (Tokyo Tech/KAUST)

Memory complexity of FMM vs H (HLRA)

Conclusions

n Plenty of ideas exist to adapt or substitute for

favorite solvers with methods that have:

◆ reduced synchrony (in frequency and/or span)

◆ higher residence on the memory hierarchy

◆ greater SIMT/SIMD-style shared-memory concurrency

n Programming models and runtimes may have

to be stretched to accommodate

n Everything should be on the table for trades,

beyond disciplinary thresholds è “co-design”

“Hourglass” model for algorithms
(borrowed from internet protocols)

applications

architectures

algorithmic
infrastructure

Hierarchical Computations on
Manycore Architectures: HiCMA*

* appearing incrementally at https://github.com/ecrc

This talk was made possible through baseline KAUST
support for ECRC research scientists and our vendor-
sponsored efforts on hosting FMM and H-matrix
methods on MIC and GPU architectures

CENTER OF EXCELLENCE

Acknowledgments

Thank you!

اركش

david.keyes@kaust.edu.sa

