T

THE ROYAL SOCIETY

s o _ — e
}} Y| e . T — T s T TR B R N [P s :
P A " ; e i : — | : T) LT P RO Ak
il /4 ; s B g, - e e i pid e el i -‘»# e _
“' 4 "\ "" DA it - st Rt b S o = |
. N e
[A et

AT, T

“‘&"ml. i .“ o] | et -:ﬂiiz A RO gy ,ﬂ’lﬁ‘ﬁ T -

= S 0

pra e B

Hatem Ltaief, George Turkiyyah & David Keyes
Extreme Computing Research Center (ECRC)

King Abdullah University of Science and Technology

® To better exploit emerging architectures, we need
new implementations of linear, least squares,
eigenvalue, and singular value solvers that

- offer tunable accuracy-time tradeoffs
- exploit hierarchy of precisions

- may require more flops but offer more
concurrency (and thus complete faster)

® Besides exposing more concurrency, we must

- remove synchrony and over-ordering

- dwell as high as possible on the memory hierarchy

To take away (2)

® With such new solvers, we can extend many
applications that possess

- memory capacity constraints (e.g., geospatial
statistics, PDE-constrained optimization)

- energy constraints (e.g., remote telescopes)

- real-time constraints (e.g., wireless commun)

- running time constraints (e.g., chem, materials,

genome-wide associations)

WY ERE T HBaT

T

L e i i L
7 (1) PRI ¢

IR PTG i)

Sl R e

To take away (3)

°® If you can speed up Globe Theatre
linear algebra

kernels, “the world’s
your oyster, which
you with sword will

open” *
® This can all be illustrated in applications

- but not all in 30 minutes ©

® Hope it highlights the relevance of this workshop

* Shakespeare (1600), The Merry Wives of Windsor, Act 11, Scene 11

AHIGH PEFORMANCI
FOR GROUND-BASED ASTRONOM

FRAMEWORK

e omputing
R, e I

The MultiObject Adaptive Optics (MOAO] framework providos a comprehonsive tostbed for high performance
computational astronomy. In particular, the European Extremely Large Telescope (EELT) s one of today's most challenging

0

(N

" BOWNLOAD THE SOFTWARE AT hitp/fgithub.com/ecrc/moao

https://github.com/ecrc/

PARALLEL HIGH PERFORMANCE UNIFIED FRAMEWQRK FOR GEOSTATISTICS ON.MANY-CORE SYSTEM

ExaGeoStat - oo
Research Center

The Bxascale GeoStatistics project (EaGeoStat) s a paralll high performance unified framework for_ computational

T ————
acceloratonbast -

~ ctatisticians to tackle computationally
0 through stateoftheart. high

itor

Ex

- L
spial
mi
Estimation (ML.
et and real 0.
+ Rlargoscalo prodiction oo |
for unknown measuremonts:
on known ocations + Insitu procesei

Performance Results (MLE)

DOWNLOAD THE LIBRARY AT hitp//gthub.com/ecrc/exageostat

KAUST BLAS (KBLAS) @ o igh erfomanco CUDA forory mplemertig o subse of BLAS se wol ss Lnear Ageora
PACKage (LAPACK] routines on NVIDIA GPUs.

in NVIDIA cuBLAS "\

KAUST BASIC LINEAR ALGEBRA ROUTINES

—_—
Extreme Computing
Research Center

el cocnd don o T Gov stespone KBLAS repts. erlore compraench 1 flrs

aigores

fotisvabio i o

RECURSIVE ALGORITHMS: TRMM and TRSM

;l./lu'

pticrreies

BATCH ALGORITHMS: Recursive Cholesky POTRF

KBLAS 20
+ Logacy Levet2 BLAS: rao) SYMV, GEMY,
HEMY.
+ Legacy Level3 BLAS: rao) TRSM, TRMM.

Ea)
. BLAS: r5:00-) TRSM. TAMM,

+ e Trngur. (o en TRTALLAUUM.
© Bt Symetne. o1 POTRF. POTRS,

KBLAS HIGHLIGHTS

"o .n i at

CURRENT RESEARCH

 KBLAS Level2 (o) SYMV & HEMV.
* KBLAS Leveld (o] TRMM & TRSM

PERFORMANCE RESULTS

 Half Precision Legacy and Batch BLAS.
v.», Lok (1) S o e

R GPUResident Matrx Computations.
Mo Croo oproimson PR oGP

rani— Winnin_teuloor

BFE @D T SRS G

Ao @ RO G

AHIGH PERFORMANCE STENCIL FRAMEWORK USING
WAFEFRONT DIAMOND TILING

Extreme Computing
Research Center

The Ginih framework implements a generalzed multidimensional intra-tile parallelization scheme for shared-cache
multicore processors that results in a significant reduction of cache size requirements for temporally blocked stencil
codes. and wide range

ocally cached data reuse. The Girih ibrary reduces cache and memory bandwidth pressure, which makes it amenable to

MULTIDIMENSIONAL INTRA-TILE PARALLELIZATION

ting Accuracy, Reliability
putal

STARS-H

STARSH s o high performance parallel openvsource package of Software for Testing Accuracy, Reliabilty and Scalabilty
o It provides a

xtreme Computing
Rescarch Center

atrices? Because such matrices
a1 many POEsarduss mu ver momary. i i s T o compagions. Thare aro sl harrcica

data for
ey petomanes of Naroncal ase st B o 5 g PG seNRAcPG iRt smars urenty

STENCIL COMPUTATIONS

* Agpear ke iernce, et ard voume
discretizations of PDES

-+ £5.50 wave acec wove squation & &
o AN e

7poi sanch [w— Thread ssgmere n spacotine dmensins
SOFTWARE INFRASTRUCTURE GIRIH 1.00 CURRENT RESEARCH
MPI + OpenMP * Matrix power kernels
- Sigloand - Overiapring
- Auonun + GPU herdware sccelracors
- Srortand long stenci ranges n - OpenACC/ CUDA
space sndtime - Outatcore aigoritms
1 - o ‘o
T profing+ Extonsionto CFD applcations
PERFORMANGE RESULTS 5 CFOER N SPACEAND 0GR N T - COUBLE PRECSCH
+ 25 puint star stanci e [+
L1
E cme \nw SNB [sAm/EuMB] -
)
ey
[P
sy st -
e ‘
Sehed a2£ nstysammand o -
DOWNLOAD THE SOFTUUAE AT g oo ere g
Acolaboration of Wih supprt fom Sponsored by

(D Swon SERANY G OSR

* Bectosiaice (one over ditancel
Ay

- Data formats: Tie Low Rark (TLA]

+ Dperations: _approximation, _matri
vectar mutipication, Kryoy CG sole.

+ Synthetic appications in a matixfree
form: random TLA matnix, Cauchy

'E\emﬂwam\cs [cns over distancel
n;)

trix

Pl plstions in o marr
cetaes, ouropamin

apeslsaince.

* Programimig madels: pen, WPt

and taskbased (StarPL)

+ Agproximation techniques: SVD,

ARGR, Randomized SVD.

« pui_statitcs (ot ol
|
= Fs () 0 ()

+ And many other kernels

o statos o o 2 uas
uniform dlstribution in @ unit squa
(201 or b [3D] i Sxponantal | avaedmenan il ot seecure
kernel: ¥

71

e =0 e o lengih
rameter and i, is o dstance

oo i anc 1 spai pores

+ Extend to other problems n & matri
e form.

* Suppore HODLR, HSS, 7 and %%
data formats.

* Implement. ather approsimation
 oremes g, ACA)

0 GPU sccalerators,
Aoy e romime syems
and_programming models (eg.
PARSEC)

mormeryna 36 archuocares

D Ao CERAS =3 OSR F
i

Abstraction Layer
For Standardizing APls of TaskBased Engines

AL4SAN .- ...

Softwaro library, which provides
dopendencies from oxisting wn-

The srauion e for sindardeg APl oftaekiosesd sgnes (AusAN] s dosond

on of APls 5o uniy the oxpression of tesks and ther duts
mwms ALASAN suppores vrious e runtime avetome relying on

and, thorofore, onabl

singlocode application to assess various runtimes and their respective scheduing
componnta. The goal of ALASAN s not to Groats yot ancihar runtime system, but t further lverage the

oy
Pt

AL4SAN V1.0 Fastures Chalesky PseudoCode

ALASAN Roadmap

Tssk Intarface Software Ifrastructurs

Runtime Support
> it

Lo 2ot sbetrachen
itograti

1 @D G

in Cray LibSci

AQDWH.Bas jork on Distribute-Memory Manycore Sy

Extreme Computing
Research Cente

The KALST B (YD e 0 Hoh parorran cfwes rumows o comsing 1 dene S40 on derluead o
manycore systems. et ol on she. polar docarposivn using he O Dynamicaly Weihiad Holly
algorithm_ (@DWH), o Nokavkons ot ighor [A0. il o Scanite Compaing, 2013) Tos

SVD algorithm, compared to the traditional one-stage bidiagonal SVD. However, the inherent high level of concurrency
associated with Level 3 BLAS compute-bound kernels ultimataly compensates the arithmetic complexity

The Polar Decomposiion GDWH Algorithm Advantages

ooy i aris oy GoNrseea S 7 Retes on computs incensie kernes

Application to SVD >
> a=un

VBV = UiV = s the candiion number ¢ o te metrx

Performance Results KSVD 1.0

S S
7 Baba e

3 S s taber
Support to ScalAf PJ«U" and MR

vvyy

Asyrchronous, sk Based
GoWHSVD

> GOWHbased Egensoler

[oowHzis]

> Imagration neo PLASIA/
GMA

Daunioad tho sofowaro at i/ /gehubcom 8o /vl

Worn BLU o G cRase o 0SB

sparsity of the blems [
in satisticsnsed westhe foroastin, soismic imaging. nd mataias slanco spplcaions] and aro charactorized by
bounds,
ot eyt sktomet comptody 2 of HICMA s to dovelop fast linoar algebra
Compnation oerain ot ndoraing 1o ot e ot ot bl 3045 speciiod el sy ot

TILE LOW-RANK ALGORITHMS CHOLESKY FACTORZATION 'SOFTWARE STACK

e .

Fund ks Fand sy S
GED! CURRENT RESEARCH

PATIAL STATISTICS HICMA 0.1.0
MasrixMatsx Mutipicaton

T e | e
S : :
il o R R N s
i e S puopame | Feirne
p s Bt

N - CHAY XCAD WITH TWOSOCKET, 16 CORE HSW

i
i
L s B =

DOWNLOAD THE SOFTWARE AT hip//github cam/cre,/hema

"““ BEY @ awe Smee o OSR

Two universes of NLA exist sid

-
_ :_-.
—_

-
.h. i oy ‘ .?,.“
St

* Global indices *
doi {
doj {
for (i,j) inSdoop
}

\ /

e
’ 0-_‘_‘

e-by-side

" Hierardgie:]

c/o Instageeked.com

* Local indices *

for matrix blocks (k,/)

doi {
doj {

}

\J

~

for (i,j) inS,,doop

/

4 rleihena

Algorithms were once flat (Cholesky, 1910)

dee Syrftiner o' couatinee Cesia'n it q

{.
A ¢ ‘ g s wlangta ‘
(P2 { wslle, " £
s dn?ncg L, we

“e] . ¢ e 4 " fa e od
flagrqpie ¢l L puratine o
s gpedirgues . A sl

PRTT don syolices. o /

T ’,"/

Ers s A bl Y mpples sV
b = »

4 /'/ [/ -

Lasd -~ e ./ bt Ross Ceet) . 2 W b, o' we ell —_— m;
W - &-; b M pra, Liiinine sy W, e ALY o
. R for j=2,--- ,ndo
&:',:"\fi".’l"' : .. ¢ | e_']l =aj1/€11;
I M Oat Mty G end
1 TR ot fori=2,--- ,n—1do
it sipn = =1 g2 \1/2.
by = (aii a Zkzl ez-k) o
y AN forj=i+1,--- ,ndo
X oM enghe ¢ XTAL 1_1 &
I]) ’ e] - (aji = Zk:l ejkgzk) /eiio
‘ end
VP - d Vo :..,‘A, lriand . bmracorsre, Y i n—1 2 1/2.
hona stplact gor b wplie [l doccantc b 0 1oy SN enn = (a'nn - k=1 enk) / L
Al Al alial f vabus Y]
Ao AN 4 F AN, end
A

R w triangular recurrence

Architectures were flat, as well (vN, 1945)

£t of & Report

Y he WO

Joha vor Neunann

Contract No. W-070=0RD-4525
Betwean the
United States Army Ordnance Uespartowsnt
and the

University of Pennsyivantia

/ \
N " .
! \ Central Processing Unit
f
/
Control Unit
Moore School of Flactrical kngineoriry
University of Pemnsylvania
A Input Arithmetic/Logic Unit Output
June 30, 1945 Device Device

Mational Bureau of Standards
Division 12
Data Processing Systems

Memory Unit

Since 1985: “horizontal” structure...

ANy

A\

N
=
=
A8y
'f«

¥ .;'(

]
J
i

e

|

-'.7}]
<]
=
ey

/)
R

‘%}!@
<
--.}\"5\1

20

.
=7 T

S

s S
NS, e
W, SN/
PO .44'% :

128-node hypercube

c/o Computer History Museum, Mountain View, CA

Today’s “horizontal” structure...

dragonfly
network

c/o Cray

Cray’s “Aries” network

copper within a cabinet
optical between cabinets
scalability of a fat tree
cost of a torus

maximum of three hops
between any pair of the
200,000 Xeon cores in
KAUST’s Cray XC40

And now add: “vertical” structure

x16 x16 (10 x4 (DM Intel,s
256-core

186 CORE x86 CORE 186 CORE 186 CORE
~ 2-wide, out-of-order 32 byres » m" 2-wide, out-of-order 2-wide, out-of-order 2yt Sy 2-wide, out-of-order ot
; Atom, 14 nm Silvermont Write Atom, 14 nm Silvermont . | Atom, 14 nm Silvermont Wine) Wose Atom, 14 nm Silvermont : o
= ﬁ.a_\«. Em' = ﬁu.,«. ol e -4 l S
z s |12 Higitis e ~[E
= 2E|| 33 = 25| 35 =
2 2 a* e 3 ar 2 °
- Landing
I Tty C NI RIINIE §: K 3§ i 2 £ il
— 1 ' T .
= e St rocessor
Bimn . DT T bl {11 1] 11 seel 1T 1T
186 CORE 186 CORE 186 CORE 186 CORE
2-wide, out-of-order 32tpes 32y 2-wide, out-of-order 2-wide, out-of-order 2byes 3240 2-wide, out-of-order
£ Atom, 14 nm Silvermont Write Atom, 14 nm Silvermont Atom, 14 nm Silvermont Write 2 Wrae Atom, 14 nm Silvermont .
= o m T B = = o neste
2 o2
(=) » » » . ~
7 53 5 i3 iz 7
5 £ z £
- - — - levels of
~ =
A g
: ERRART) i SHHS I 1] ‘
il il I UL T T T | i
H ve it b “{ B SRSt e b e +Hoss!
1l Iua L e — 153
186 CORE 186 CORE 186 CORE 186 CORE . M DRAM
2-wide, out-of-order 2-wide, out-of-order (:

333332 33|

3 33 o 2-wide, out-of-order " " 2-wide, out-of-order
% bytes 32:bynes S 32bytes 328y e
Atom, 14 nm Silvermont Weite Wise Atom, 14 nm Silvermont Atom, 14 nm Silvermont Wit — Wree Atom, 14 nm Silvermont
. _.' ~
baDytes o e
Read

; ; bytes m

e ; ; e e ; } =

-~ -

< 2 ” » s <

Z 5o |t 5. i1 |1 s x e DDRA4
a z Fz it L 2E a

2 3=];‘ 3=4) a” <z

- -

2 &

SDRAM

all within a
3 Tflop/s
node

c/o M. Farhan, KAUST

Two decades of evolution
1997 2017

ASCI Red at Sandia Cavium ThunderXZ

1.3 TF/s, SSQKW ~ 1.1 TF/s, ~ O.a KW

magnitude

Hierarchies do not necessarily match!

As humans managing implementation complexity,
we would all prefer:

e hierarchical algorithms on flat architectures

or even (suboptimally)

o flat algorithms on hierarchical architectures

We go to exascale
with the architectures we have,
not with the architectures we want.

A 4,000-node subset of ORNL’s Summit sustains 1.88
ExaOp/s of mixed precision on a genomics application

Majority of these operations are half-precision (16-bit
floating point) NVIDIA tensor-core matrix-matrix
multiplies

Now: hierarchy of precisions

SIAM J. Sci. COMPUT. (© 2018 SIAM. Published by SIAM under the terms
Vol. 40, No. 2, pp. A817-A847 of the Creative Commons 4.0 license

ACCELERATING THE SOLUTION OF LINEAR SYSTEMS BY
ITERATIVE REFINEMENT IN THREE PRECISIONS*

ERIN CARSONT AND NICHOLAS J. HIGHAM?

TABLE 1.1
Summary of existing rounding error analyses for iterative refinement in floating point arithmetic
indicating (a) whether the analyses apply to LU factorization only or to an arbitrary solver, (b)
whether the backward or forward error analyses are componentwise (“comp”) or normwise (“norm”),
and (c) the assumptions on the precisions uf, us, u, ur in Algorithm 1.1 (uf = u and us = uy
unless otherwise stated).

Forward Backward

Year Solver error error Precisions

Moler [27] 1967 LU norm — U > Ur
Stewart [36] 1973 LU norm - U > Uy
Jankowski et al. [22] 1977 arb. norm norm U = Up
Skeel [34] 1980 LU comp comp U > Ur
Higham [17] 1991 arb. comp comp U = Up
Higham [18], [19] 1997 arb. comp comp U > Up
Tisseur [37] 2001 arb. norm norm U > Ur
Langou et al. [24] 2006 LU norm norm Uf > U= Ur
Carson and Higham [9] 2017 arb. comp = U > Upr
This work 2017 arb. comp comp, norm Uf > Us > U > Uy

Now: hierarchy of ranks

e Memories are hierarchical in an increasing
number of levels

stronger-than-ever incentive to tune algorithms
for register & cache reuse

additional flop/s cost little, within a given
workingset of data that fits in highest level
cache

more computation leading to less
communication and/or synchronization may be
a good trade-oft

It’s not just bandwidth; it’s energy

e Access SRAM (registers, cache) ~ 10 fJ/bit
e Access DRAM on chip ~ 1 pd/bit
e Access HBM/MCDRAM (few mm) ~ 10 pd/bit
e Access DDR3 (few cm) ~ 100 pJd/bit

~ 104 advantage in energy for staying in cache!

similar ratios for latency as for bandwidth and
energy

Algorithmic imperatives

1) Reside “high” on the memory hierarchy

+ as close as possible to the processing elements
2) Reduce communication and synchrony

+ in frequency and/or span

3) ... SIMT-style batching ... algorithm-based
fault tolerance ... etc.

Widely applicable strategies

1) Employ dynamic runtime systems based on
directed acyclic task graphs (DAGsS)

¢ e.g., Charm++, Quark, StarPU, Legion, OmpSs, HPX,
ADLB, Argo, ParSec

¢ dynamic scheduling capabilities in OpenMP

2) Exploit data sparsity of hierarchically low-rank
type
¢ meet the “curse of dimensionality” with the “blessing of

low rank”

3) Code libraries to various architecture while
presenting high-level application programmer
interface

o Advantages

+ remove artifactual synchronizations in the form
of subroutine boundaries

+ remove artifactual orderings in the form of pre-
scheduled loops

s €Xpose more concurrency
o Disadvantages
+ pay overhead of managing task graph

+ potentially lose some memory locality

o Advantages

+ shrink memory footprints to live higher on the
memory hierarchy

= higher means quick access (T arithmetic intensity)
+ reduce operation counts
+ tune work to accuracy requirements
= e.g., preconditioner versus solver
o Disadvantages
+ pay cost of compression

+ not all operators compress well

o Advantages

« tiling and recursive subdivision create large
numbers of small problems that can be marshaled
for batched operations on GPUs and MICs

m amortize call overheads

= polyalgorithmic approach based on block size

+ non-temporal stores, coalesced memory accesses,
double-buffering, etc. reduce sensitivity to memory

o Disadvantages

+ code is more complex

+ code is architecture-specific at the bottom

1) Reduce over-ordering and synchronization
through DAGs, ex.: generalized eigensolver

Ax = ABx

Operation Explanation LAPACK routine name

© B=LxL" Cholesky factorization POTRF

©@ C=L"1xAx LT application of triangular factors SYGST

or HEGST

© T=QT xCxQ tridiagonal reduction SYEVD or HEEVD

Q Tx= X QR iteration STERF
) O
@ O
® o
= @D
© ©
S @
S ©
© @
D D
D @

Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

e Diagram shows a
dataflow ordering of the
steps of a 4x4 symmetric
generalized eigensolver

e Nodes are tasks, color-
coded by type, and edges
are data dependencies

e Time is vertically
downward

e Wide is good; short is
good

CRCRCRCNCNCRCRCRCRCRCRCNCNCRCNCRCRCNCRCRORONONG

2) Reduce memory footprint and
operation complexity with low rank

* Replace dense blocks with hierarchical
representations when they arise during matrix
operations

— use high accuracy (high rank, but typically less than
full) to build “exact” solvers

— use low accuracy (low rank) to build preconditioners

® Tune block structure and rank parameters to
variety of hardware configurations

[Hackbusch, 1999] : off-diagonal blocks of typical
differential and integral operators have low effective rank

Similarly: Schur complements of the above, covariance
matrices from statistics, Hessians from optimization, etc.

By exploiting low rank, £, memory requirements and
operation counts approach optimal in matrix dimension
n:

— polynomial in £

— lin-log in n

— constants carry the day

Such hierarchical representations navigate a compromise
— fewer blocks of larger rank (“weak admissibility”) or

— more blocks of smaller rank (“strong admissibility”)

Recursive construction of an H-matrix

LR

Step 2

Step O

Step 1

Step 3

Specify two parameters:

® Block size acceptably
small to handle
densely

® Rank acceptably
small to represent
block

Until each block is
acceptably small:

® Is rank acceptably
small?

® |f not, subdivide
block

Take union of leaf blocks

Tree-like structures of
“Standard (strong)” vs. “weak” admissibility

:

",

strong admissibility weak admissibility
after Hackbusch, et al., 2003

Hierarchically low-rank “renalssance”

Replace dense linear algebra
Compute : (’)(N3) — O(kaN]Ogb N)
Memory : O(Nz) — O(kN)

Hierarchical off-diagonal blocks

Approximated with rank k
@ and b are small constants

Augment sparse linear algebra 5

irect solv

Schur complement (frontal matrix) is dense but numerically low-rank
Nested dissection
e () s (E

|| |
2 —duHiz—u
I I l
6 — 16 —{2s19 — 20
| |

[terative solvers 5 —7|Jaa}-is—17
W || |
Use small K to precondition '« L s

Less sensitive to matrix condition than multigrid Schur complement

c/o Rio Yokota (Tokyo Tech/KAUST)

Hierarchical algorithms and extreme scale

Must address the rension between

o highly uniform vector, matrix, and general SIMT
operations

o hierarchical algorithms with tree-like data structures and
scale recurrence

Tile Low Rank (TLR) is a compromise
between optimality and complexity

N ER

™].,
] "
5. Dense .
Va JL Vs H % tiles v O T O
-..]—-.]Vl.l Ve —.]‘,‘—‘,].—\.l._J\\. ‘
YR | MR | TR ‘lﬁ % L _r‘ In—h. "[-.—l-- I'v_|'<' {8 J‘_)
Fixed ranks Fixed accuracy
Preconditioners Variable ranks

Performance oriented Dense/Sparse Direct Solvers

T. Mary, PhD Dissertation, Block Low-Rank multifrontal solvers: complexity, performance, and

scalability, 2017.
C. Weisberger, PhD Dissertation, Improving multifrontal solvers by means of algebraic Block

Low-Rank representations, 2013.

Example: Cholesky

The Cholesky factorization of an N x N real symmetric, positive-definite
matrix A has the form

A=LLT,

where L is an N x N real lower triangular matrix with positive diagonal
elements.

Panel algorithm
(LAPACK’s POTRF)

UPDATE

(a) First step. (b) Second step. (c) Third step.

Left- and right-looking variants, column-blocked for BLAS3
Decreasing concurrency

Artifactual over-ordering

Tile algorithm
(PLASMA, MAGMA, Chameleon)

Implemented with DAG-based scheduling

Performance evolution of dense Cholesky

Speedup
S

2005 2007 2009 2011 2013 2016 2017 Today
Panel Algorithms

Performance evolution of dense Cholesky

40 ..

30 ..
o
3
0 20 ..
Q.
(/9]

1 O ,,,,,,,,,, T Ly Sy SO s

1&
e— |

2005 2007 2009 2011 2013 2016 2017 Today
Tile Algorithms

Performance evolution of dense Cholesky

.. S ———
) wvsavsomonsassssmamsc e A A 5 A R ARSI
Q.
g
o T R e
Q.
7))
R e P A S R e e e D S SR R R e SR R R

2005 2007 2009 2011 2013 2016 2017 Today
SNB AVX

Performance evolution of dense Cholesky

40 ..
30 ...
o
-
8 20 ..
a P
(7))

2005 2007 2009 2011 2013 2016 2017 Today
KNC IMCI512

Performance evolution of dense Cholesky

Speedup

2005 2007 2009 2011 2013 2016 2017 Today
HSW AVX2

Performance evolution of dense Cholesky

Speedup

2005 2007 2009 2011 2013 2016 2017 Today
KNL AVX512

Performance evolution of dense Cholesky

Speedup

2005 2007 2009 2011 2013 2016 2017 Today
SKL AVX512

Performance evolution of dense Cholesky

35x
50 Gflops/s # 1700 Gflops/s

Speedup

2005 2007 2009 2011 2013 2016 2017 Today
SKL AVX512

Performance evolution of dense Cholesky

35x
50 Gflops/s ﬁ 1700 Gflops/s

40
B ssmisisiiisin gl Mgl R T v
Q
8
R S r———cess | N
Q.
7
10

2005 Today
SKL AVX512
(first factor based on tiling;
successive factors, 2007-2017, based on Top500 hardware generations)

Performance evolution of dense Cholesky

2005 2007 2009 BEd o201 G mirmy 2016 2017 Today

Tile Low Rank

HiCMA vs. Intel MKL on shared memory

Geospatial statistics (Gaussian kernel) to accuracy 1.0e-8
® Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
® Two generations of linear algebra (classical dense and tile low rank)

Red arrows:

103 |
speedups from
hardware,
102 | same algorithm
z JI
— £ zﬁAAA Green arrows:
}_
. speedups from
classical € 10 | P P
MKL-SNB algorithm,
— « MKL-HSW
_ MKL-SKL same hardware
HICMA-SNB
tiIe |OW rank - 100 == | | | .~ ssp = HICMA-HSW |
o /= HiCMA-SKL Blue arrow:
27K 40K 54K 68K81K 108K135K 176K 230K 29J7K
Matrix size From bOth

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,
Europar 2018.

HiCMA vs. ScaLAPACK on distributed memory

104

| T 1 | |
m(mee SCcalLAPACK 16 nodes

m=Omes Scal APACK 32 nodes
e SCalLAPACK 64 nodes
= ScalLAPACK 128 nodes
10% -+ o Scal APACK 256 nodes

= A== HICMA-TLR Cholesky-16/ 77l Nearly 2 orders of
/ magnitude for 0.5M size
o : //3 | matrix on 16 nodes
@ 102 A~
'—
10!
s
10°

54K 8iK 10'8I<135K 189K 270K 351K 459K594K
Matrix size

K. Akbudak, H. Ltaief, A. Mikhalev, A. Charara, and D. E. Keyes, Exploiting Data Sparsity for
Large-Scale Matrix Computations, EuroPar 2018

Memory footprint for DP matrix of size 1M

104
4TB A\
= 10° 8
o | — Ful| rank
g‘ | ey Synthetic 1 to 2 orders of
E | mmO== Statistics magnitude less,
< 102 depending upon
accuracy
1

10° 10-3 10°® 1072 10°'% 107
Accuracy Threshold

K. Akbudak, H. Ltaief, A. Mikhalev, A. Charara, and D. E. Keyes, Exploiting Data Sparsity for
Large-Scale Matrix Computations, EuroPar 2018

HiCMA on distributed memory

Geospatial statistics
(Gaussian kernel) to
accuracy 1.0e-8

e Cray XC40
(“Shaheen”, 32
Haswell cores per
node)

® Range of problem
sizes and core
count

Time(minutes)

1331

50 1
42 -

307

20

17
131

Missing upper
end: insufficient

|
memory—

= mmumn
P ——]

= =]
\ I

/ /F Missing lower

end: insufficient

work

HICMA-16
HICMA-32
HICMA-64
HICMA-128
HICMA-256
HICMA-512

1M 2M

4M 5M 6M

Matrix size

8M 11M

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,

Europar 2018.

Execution traces

Chameleon: Dense DPOTRF time 18.1s
4 nodes of Shaheen with a matrix size of 54K

@ RE & s P » A T Noaows nNoevents

e —TXT
—

RN AR AR o AR A R IR I RRRERAR RN LA R

.wnlainus/sla-’.es: - change position: + Zoom: | 100% w

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,
Europar 2018.

Execution traces

HiCMA: TLR DPOTRF time 1.8s (10X faster)
4 nodes of Shaheen with a matrix size of 54K

J & o MW~ A 2 vosrows Noevents

Scale containers/states: = Change position: "+ v Zoom: | 418% o«

Akbudak, Ltaief, Mikhalev, Charara, & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations,
Europar 2018.

So far, just Tile Low Rank...

IT GETS
BETTER

Now: general H-matrices

o First advance: adopt ‘H ? matrix structure

e Second advance: use randomized SVD
(Halko, Martinsson & Tropp, 2009) to form
the low-rank blocks at the leaves

- an easy, flop-intensive GEMM-based flat
algorithm

e Third advance: implement using “batches”
on GPUs/multi-GPUs

H 2 hierarchical matrix representation

» general blocking structure

» nested bases
l l ol /1T
— A =U; S4; V;

L. U! E!
)
U] | B

— reduces memory footprint to O(n) from O(nlogn)

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS 45:3 (2019)

Hierarchical MatVec execution time

2—1 —
2=3 |- Linear
@ 2—5 -]
O
=
= 277
—@ HMV SP - ®- HMV DP
0 —a&— Streamed HMV SP - 4- Streamed HMV DP
2T —m— HMV SP (CUBLAS) - m- HMV DP (CUBLAS)
_— Linear Growth
2_11 — \ \ | 1 |

9l4 915 916 9l7 918 919 920 <=======* matrix sizes from 16K to IM

Problem Size

» 3D covariance matrices from spatial statistics
» running on P100 GPU
» accuracy 1072 computed as || Az — A% z||/|| Az||

» leaf size m = 64

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS 45:3 (2019)

Hierarchical MatVec bandwidth

800 |
Theoretical peak
—~ 600 |- ‘
o e HMV SP - o- HMV DP
O —A— Streamed HMV SP - 4o- Streamed HMV DP
= 400 —m— HMV SP (CUBLAS) - m- HMV DP (CUBLAS)
% ——— Theoretical Peak
&
gs
2 200 d
M
O [| | | \ ‘ 1

214 215 216 217 218 219 220
Problem Size
3D covariance matrices from spatial statistics

B
» running on P100 GPU
» accuracy 1073 computed as || Az — A% z||/|| Az||

» leaf size m = 64

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and
Compression, ACM TOMS 45:3 (2019)

Hierarchical compression

Time (s)
[\
o

24 —e— H-Compress SP
- ®- H-Compress DP
9—9 - ——— Linear Growth

Problem Size

GFLOP/s

600

200

400

300

200

100

—— H-Compress SP
- ®- H-Compress DP

216 217 218 219 220

Problem Size

3D covariance matrices from spatial statistics

b
» running on P100 GPU
>

accuracy 1073 computed as ||Az — Az /|| Az|

» leaf size m = 64

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and

Compression, ACM TOMS 45:3 (2019)

Adaptive Randomized Approximations (ARA)

» allow fast construction of low rank approximations
» rely on sampling the matrix through mat-vec operations

— can be done on multiple vectors simultaneously
— for increased arithmetic intensity

» applicable to dense matrices and, with hierarchical extensions, to ‘H
matrices

» particularly effective on GPUs
— can leverage high-performing GEMM routines

Comparison with Jacobi (Givens) SVD

101 ' i i T E
- —e—DP ARA —m— DP SVD E g : : : ! -
- i | —.e—DP ARA —@— DP SVD i
I o= SR ARA-u: 8 SVD i 102 |{ - e~ SP ARA - m- SP SVD E
100 | > : :
- 7 10! 3 — =
C Eamy-Es - -0--®--8--- i : = i
- i A Greater | 1
-1 = — = =
107 ¢ More than 2 orders % E 10 ; advantage | :
? of magnitude o - at larger size | |
forDP |
1072 E : ;
é """" ; 102 =
10_3 | | | | | 10—3 i | |] | | |

25 30 35 40 45 100 200 300 400 500
Actual Rank Matrix Size

» batch of 1000 matrices in single and double precision
» varying rank for fixed size (128)
» varying size for fixed rank (47)

Hierarchical Adaptive Randomized Approximation
(HARA)

» extends the basic idea to hierarchical matrices
» samples blocks of the matrix and accumulates the local low rank
updates into an H-matrix that is recompressed

HARA LRU
0
A Q QBT A}H
0 HARA LRU
2
A Q QBT . A

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, submitted to SISC (2019)

Time

Performance of HARA on GPU

Matrix sizes from 16K to 256K; accuracies 102 to 104
Time and no. samples to compress

I] I T
102 = 3 —— Samples € = 102
E E 2,000 - —&— Samples ¢ = 10~*
i 1,500 +
1 8
10° 1 =
i 1 @ 1,000 |-
. / —@— HARA ¢ = 10-2 s L
10 E —8— HARA e = 107* (] = B
- O(nlogn)] o—
C 1 | | - | | 1 l |
214 215 216 217 218 214 215 216 217 218
Problem Size Problem Size

» spatial covariance matrix reconstructed from HGEMYV products

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, submitted to SISC (2019)

‘H matrix-H matrix multiplication

» can be cast as the problem of constructing an H-matrix from
matvec operations

» we can do HGEMV operations efficiently on GPUs
— HGEMYV on multiple vectors is even more efficient

» HARA construction of product also performed efficiently on the GPU

Fast matvecs = fast approx inversions with Newton-Schulz

B | n [[|
] —®— Samples € = 1072
600 |- —8— Samples ¢ = 107* i
10! - - 500 -
0 L 1 8
2 1 & 400f |
= <
n
: 300 |- -
100 |- / —e— HARA e =102 | | - t_,/--/-”"‘
- —8— HARA e = 10~% |7 200 + gy o
i O(nlogn) : =
| | | | = | | | | |
214 215 216 217 218 214 215 216 217 218
Problem Size Problem Size

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from
MatVec Operations, submitted to SISC (2019)

Memory complexity of FMM vs H (HLRA)

3-D Laplace kernel

-o~-HLRA (weak)
-©-HLRA (strong)
~=~FMM

1071¢

sourc; Jﬁartlcles

c/o Rio Yokota (Tokyo Tech/KAUST)

Conclusions

o Plenty of ideas exist to adapt or substitute for
favorite solvers with methods that have:

+ reduced synchrony (in frequency and/or span)
+ higher residence on the memory hierarchy
+ greater SIMT/SIMD-style shared-memory concurrency
e Programming models and runtimes may have

to be stretched to accommodate

o Everything should be on the table for trades,
beyond disciplinary thresholds =» “co-design”

“Hourglass” model for algorithms
(borrowed from internet protocols)

algorithmic
infrastructure

architectures

Hierarchical Computations on
Manycore Architectures: HICMA*

Static/Dynamic
Runtime

HCORE -
hwiocinetioc

STARS-H

B HicMA Distribution

- External Dependencies

* appearing incrementally at https://github.com/ecrc

Acknowledgments

This talk was made possible through baseline KAUST

support for ECRC research scientists and our vendor-
sponsored efforts on hosting FMM and ‘H-matrix

methods on MIC and GPU architectures

i@ C=RAY

GPU THE SUPERCOMPUTER COMPANY

RESEARCH CENTER OF EXCELLENCE
CENTER R R e B

(

Thank you!

david.keyes@kaust.edu.sa

