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To take away (1)
n To better exploit emerging architectures, we need 

new implementations of linear, least squares, 
eigenvalue, and singular value solvers that
- offer tunable accuracy-time tradeoffs
- exploit hierarchy of precisions
- may require more flops but offer more 

concurrency (and thus complete faster)
n Besides exposing more concurrency, we must 

- remove synchrony and over-ordering
- dwell as high as possible on the memory hierarchy



To take away (2)
n With such new solvers, we can extend many 

applications that possess
- memory capacity constraints (e.g., geospatial 

statistics, PDE-constrained optimization)
- energy constraints (e.g., remote telescopes)
- real-time constraints (e.g., wireless commun)
- running time constraints (e.g., chem, materials, 

genome-wide associations)



To take away (3)
n If you can speed up 

linear algebra 
kernels, “the world’s 
your oyster, which 
you with sword will 
open” *

* Shakespeare (1600), The Merry Wives of Windsor, Act II, Scene II

n This can all be illustrated in applications
- but not all in 30 minutes J

n Hope it highlights the relevance of this workshop

Globe Theatre



dense tiles 
Cholesky: O(n3)

tile low rank 
Cholesky: O(kn2)

TILE LOW-RANK ALGORITHMS CHOLESKY FACTORIZATION SOFTWARE STACK 
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HIERARCHICAL	COMPUTATIONS	ON	MANYCORE	ARCHITECTURES	

The Hierarchical Computations on Manycore Architectures (HiCMA) library aims to redesign existing dense linear algebra 
libraries to exploit the data sparsity of the matrix operator. Data sparse matrices arise in many scientific problems (e.g., 
in statistics-based weather forecasting, seismic imaging, and materials science applications) and are characterized by 
low-rank off-diagonal tile structure. Numerical low-rank approximations have demonstrated attractive theoretical bounds, 
both in memory footprint and arithmetic complexity. The core idea of HiCMA is to develop fast linear algebra 
computations operating on the underlying tile low-rank data format, while satisfying a specified numerical accuracy and 
leveraging performance from massively parallel hardware architectures.  

HiCMA 0.1.0 
•  Matrix-Matrix Multiplication 
•  Cholesky Factorization/Solve 
•  Double Precision 
•  Task-based Programming Models 
•  Shared and Distributed-Memory 

Environments 
•  Support for StarPU Dynamic 

Runtime Systems 
•  Testing Suite and Examples 

CURRENT RESEARCH 
•  LU Factorization/Solve 
•  Schur Complements 
•  Preconditioners 
•  Hardware Accelerators 
•  Support for Multiple Precisions 
•  Autotuning: Tile Size, Fixed Accuracy and 

Fixed Ranks 
•  Support for OpenMP, PaRSEC and Kokkos 
•  Support for HODLR, H, HSS and H2  

GEOSPATIAL STATISTICS 
N = 20000, NB = 500, acc=109, 2D problem sq. exp. 

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/hicma 

PERFORMANCE RESULTS CHOLESKY FACTORIZATION – DOUBLE PRECISION – CRAY XC40 WITH TWO-SOCKET, 16-CORE HSW 

Performance Results 

State-of-the-Art 
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A	QDWH-Based	SVD	So=ware	Framework	on	Distributed-Memory	Manycore	Systems		

The KAUST SVD (KSVD) is a high performance software framework for computing a dense SVD on distributed-memory 
manycore systems. The KSVD solver relies on the polar decomposition using the QR Dynamically-Weighted Halley 
algorithm (QDWH), introduced by Nakatsukasa and Higham (SIAM Journal on Scientific Computing, 2013). The 
computational challenge resides in the significant amount of extra floating-point operations required by the QDWH-based 
SVD algorithm, compared to the traditional one-stage bidiagonal SVD. However, the inherent high level of concurrency 
associated with Level 3 BLAS compute-bound kernels ultimately compensates the arithmetic complexity overhead and 
makes KSVD a competitive SVD solver on large-scale supercomputers.  

The Polar Decomposition 
Ø  A = UpH, A in Rmxn (m≥n) , where Up is 

orthogonal Matrix, and H is symmetric 
positive semidefinite matrix 

Application to SVD 
Ø  A = UpH 
         = Up(VΣVT) = (UpV)ΣVT

 = UΣVT 

QDWH Algorithm  
Ø  Backward stable algorithm for computing the 

QDWH-based SVD 
Ø  Based on conventional computational kernels, 

i.e., Cholesky/QR factorizations (≤ 6 iterations 
for double precision) and GEMM 

Ø  The total flop count for QDWH depends on 
the condition number�of the matrix	

KSVD 1.0  
Ø  QDWH-based Polar Decomposition 
Ø  Singular Value Decomposition 
Ø  Double Precision 
Ø  Support to ELPA Symmetric Eigensolver 
Ø  Support to ScaLAPACK D&C and MR3  

       Symmetric Eigensolvers 
Ø  ScaLAPACK Interface / Native Interface 
Ø  ScaLAPACK-Compliant Error Handling 
Ø  ScaLAPACK-Derived Testing Suite 
Ø  ScaLAPACK-Compliant Accuracy  

Current Research 
Ø  Asynchronous, Task-Based QDWH  
Ø  Dynamic Scheduling 
Ø  Hardware Accelerators  
Ø  Distributed Memory Machines  
Ø  Asynchronous, Task-Based  
       QDWH-SVD  
Ø  QDWH-based Eigensolver  
       (QDWH-EIG)  
Ø  Integration into PLASMA/

MAGMA 

Advantages 
Ø  Performs extra flops but nice flops  
Ø  Relies on compute intensive kernels  
Ø  Exposes high concurrency  
Ø  Maps well to GPU architectures  
Ø  Minimizes data movement  
Ø  Weakens resource synchronizations  

Download the software at http://github.com/ecrc/ksvd 

Chameleon 1.9 
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A HIGH PERFORMANCE STENCIL FRAMEWORK USING 
WAFEFRONT DIAMOND TILING 
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The Girih framework implements a generalized multi-dimensional intra-tile parallelization  scheme for shared-cache 
multicore processors that results in a significant reduction  of cache size requirements for temporally blocked stencil 
codes.. It ensures data access patterns that allow efficient hardware prefetching and TLB utilization across a wide range 
of architectures. Girih is built on a multicore wavefront diamond tiling approach to reduce horizontal data traffic in favor of 
locally cached data reuse. The Girih library reduces cache and memory bandwidth pressure, which makes it amenable to 
current and future cache and bandwidth-starved architectures, while enhancing performance for many applications. 

STENCIL COMPUTATIONS 
•  Hot spot in many scientific codes 
•  Appear in finite difference, element, and volume 

discretizations of PDEs 
•  E.g., 3D wave acoustic wave equation: 

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/girih 

PERFORMANCE RESULTS 8TH ORDER IN SPACE AND 2ND ORDER IN TIME – DOUBLE PRECISION 

MULTI-DIMENSIONAL INTRA-TILE PARALLELIZATION 

Thread assignment in space-time dimensions 
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SOFTWARE INFRASTRUCTURE 

Girih system components 

GIRIH 1.0.0 
•  MPI + OpenMP 
•  Single and double precision 
•  Autotuning 
•  Short and long stencil ranges in 

space and time 
•  Constant/variable coefficients 
•  LIKWID support for profiling 

CURRENT RESEARCH 
•  Matrix power kernels 
•  Overlapping domain decomposition 
•  GPU hardware accelerators: 

•  OpenACC / CUDA 
•  Out-of-core algorithms 
•  Dynamic runtime systems 
•  Extension to CFD applications 

Diamond tiling versus Spatial Blocking on SKL Diamond tiling performance across Intel x86 generations •  Domain size: 512 x 512 x 512 
•  # of time steps: 500 
•  25-point star stencil 
•  Dirichlet boundary conditions 
•  Two-socket systems (Mem./L3):  
- 8-core Intel SNB (64GB/20MB) 
- 16-core Intel HSW (128GB/40MB) 
- 28-core Intel SKL (256GB/38MB) 
•  Intel compiler suite v17 with 

AVX512 flag enabled 
•  Memory affinity with numatcl 

command 
•  Thread binding to cores with 

sched_affinity command 
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PARALLEL HIGH PERFORMANCE UNIFIED FRAMEWORK FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The Exascale GeoStatistics project (ExaGeoStat) is a parallel high performance unified framework for computational
geostatistics on many-core systems. The project aims at optimizing the likelihood function for a given spatial data to provide an
efficient way to predict missing observations in the context of climate/weather forecasting applications. This machine learning
framework proposes a unified simulation code structure to target various hardware architectures, from commodity x86 to GPU
accelerator-based shared and distributed-memory systems. ExaGeoStat enables statisticians to tackle computationally
challenging scientific problems at large-scale, while abstracting the hardware complexity, through state-of-the-art high
performance linear algebra software libraries.

ExaGeoStat 0.1.0
• Large-scale synthetic geo-

spatial datasets generator

• Maximum Likelihood 
Estimation (MLE)
- Synthetic and real datasets

• A large-scale prediction tool 
for unknown measurements 
on known locations

Current Research
• ExaGeoStat R-wrapper 

package

• Tile Low Rank (TLR) 
approximation

• NetCDF format support

• PaRSEC runtime system

• In-situ processing

ExaGeoStat Dataset Generator
• Generate 2D spatial Locations using uniform 

distribution. 
• Matérn covariance function:
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ExaGeoStat Maximum Likelihood Estimator
• Maximum Likelihood Estimation (MLE)  learning function:
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• The associated conditional distribution
where 4'	represents a set of unknown
measurements :
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Performance Results (MLE)
Two-socket shared memory Intel x86 architectures

Figure: An example of 400
points irregularly distributed in
space, with 362 points (ο) for
maximum likelihood estimation
and 38 points (×) for prediction
validation.

Figure: Mean square error for predicting 
large scale synthetic dataset.

Figure: Two different examples of real datasets (wind speed dataset in the middle east region
and soil moisture dataset coming from Mississippi region, USA).

Intel two-socket Haswell + NVIDIA K80 Cray XC40 with two-socket, 16 cores Haswell

DOWNLOAD THE LIBRARY AT http://github.com/ecrc/exageostat

ExaGeoStat Predictor
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Place your text here A HIGH PEFORMANCE MULTI-OBJECT ADAPTIVE OPTICS FRAMEWORK 
FOR GROUND-BASED ASTRONOMY 

The Multi-Object Adaptive Optics (MOAO) framework provides a comprehensive testbed for high performance 
computational astronomy. In particular, the European Extremely Large Telescope (E-ELT) is one of today’s most challenging 
projects in ground-based astronomy and will make use of a MOAO instrument based on turbulence tomography. The 
MOAO framework uses a novel compute-intensive pseudo-analytical approach to achieve close to real-time data processing 
on manycore architectures. The scientific goal of the MOAO simulation package is to dimension future E-ELT instruments 
and to assess the qualitative performance of tomographic reconstruction of the atmospheric turbulence on real datasets. 

DOWNLOAD THE SOFTWARE AT h6p://github.com/ecrc/moao	

THE MULTI-OBJECT ADAPTIVE OPTICS TECHNIQUE 

Single conjugate AO concept Open-Loop tomography concept Observing the GOODS South 
cosmological field with MOAO 

MOAO 0.1.0 
•  Tomographic Reconstructor Computation 
•  Dimensioning of Future Instruments 
•  Real Datasets 
•  Single and Double Precisions 
•  Shared-Memory Systems 
•  Task-based Programming Models 
•  Dynamic Runtime Systems 
•  Hardware Accelerators 

CURRENT RESEARCH 
•  Distributed-Memory Systems 
•  Hierarchical Matrix Compression 
•  Machine Learning for Atmospheric Turbulence 
•  High Resolution Galaxy Map Generation 
•  Extend to other ground-based telescope projects 

PERFORMANCE RESULTS TOMOGRAPHIC RECONSTRUCTOR COMPUTATION – DOUBLE PRECISION  

High res. map of the quality of 
turbulence compensation obtained 
with MOAO on a cosmological field 

THE PSEUDO-ANALYTICAL APPROACH 

System
Parameters

Turbulence
Parameters

matcov Cmm Ctm ToR

matcov Cmm Ctm

Ctt

Cee CvvBLAS BLAS

Inter-
sample

R

ToR computation

Observing sequence

•  Compute the tomographic error:  
 Cee = Ctt - Ctm RT – R Ctm

T + R Cmm RT 
•  Compute the equivalent phase map:  

 Cvv = D Cee DT 
•  Generate the point spread function image  

Two-socket 18-core Intel HSW – 64-core Intel KNL – 8 NVIDIA GPU P100s (DGX-1) 

•  Solve for the 
tomographic 
reconstructor R: 
R x Cmm = Ctm 

This is one tomographic 
reconstructor every 25 

seconds! 
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Software for Testing Accuracy, Reliability and
Scalability of Hierarchical computations

STARS-H is a high performance parallel open-source package of Software for Testing Accuracy, Reliability and Scalability
of Hierarchical computations. It provides a hierarchical matrix market in order to benchmark performance of various libraries
for hierarchical matrix compressions and computations (including itself). Why hierarchical matrices? Because such matrices
arise in many PDEs and use much fewer memory, while requiring less flops for computations. There are several hierarchical
data formats, each one with its own performance and memory footprint. STARS-H intends to provide a standard for assessing
accuracy and performance of hierarchical matrix libraries on a given hardware architecture environment. STARS-H currently
supports the tile low-rank (TLR) data format for approximation on shared and distributed-memory systems, using MPI, OpenMP
and task-based programming models. STARS-H package is available online at https://github.com/ecrc/stars-h.

Roadmap of STARS-H
• Extend to other problems in a matrix-

free form.
• Support HODLR, HSS, ℋ and ℋ"

data formats.
• Implement other approximation

schemes (e.g., ACA).
• Port to GPU accelerators.
• Apply other dynamic runtime systems

and programming models (e.g.,
PARSEC).

STARS-H 0.1.0
• Data formats: Tile Low-Rank (TLR).
• Operations: approximation, matrix-

vector multiplication, Krylov CG solve.
• Synthetic applications in a matrix-free

form: random TLR matrix, Cauchy
matrix.

• Real applications in a matrix-free
form: electrostatics, electrodynamics,
spatial statistics.

• Programming models: OpenMP, MPI
and task-based (StarPU).

• Approximation techniques: SVD,
RRQR, Randomized SVD.

TLR Approximation of 2D problem on a two-socket 
shared-memory Intel Haswell architecture

3D problem on different two-socket shared-
memory Intel x86 architectures

3D problem on a different amount of nodes (from 64 up to 6084) of a distributed-memory 
CRAY XC40 system for a different error threshold #

Matrix Kernels
• Electrostatics (one over distance):

$%& =
1
)%&

• Electrodynamics (cos over distance):

$%& =
cos(.)%&)	

)%&
• Spatial statistics (Matern kernel):

$%& =
2234
Γ 6 26� )%&

8
4
94 26� )%&

8
• And many other kernels …

Heatmap of ranks (2D problem)

Sample Problem Setting
Spatial statistics problem for a quasi
uniform distribution in a unit square
(2D) or cube (3D) with exponential
kernel:

$%& = :
3;<=
> ,

where 8 = 0.1 is a correlation length
parameter and )%& is a distance
between B-th and C-th spatial points.
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https://github.com/ecrc/



Two universes of NLA exist side-by-side

c/o Instageeked.com
* Global indices *
do i  {

do j  {
for (i,j)  in S do op

}
}

Flat Hierarchical
* Local indices *
for matrix blocks  (k,l)

do i  {
do j  {

for (i,j)  in Sk,l do op
}

}



Algorithms were once flat (Cholesky, 1910)

triangular recurrence



Architectures were flat, as well (vN, 1945)



Since 1985: “horizontal” structure…

c/o Computer History Museum, Mountain View, CA

128-node hypercube



Today’s “horizontal” structure…
Cray’s “Aries” network
n copper within a cabinet
n optical between cabinets
n scalability of a fat tree 
n cost of a torus
n maximum of three hops 

between any pair of the 
200,000 Xeon cores in 
KAUST’s Cray XC40

c/o Cray

dragonfly
network



And now add: “vertical” structure
Intel’s   
256-core 
Knights 
Landing 
Processor
n nested 

levels of 
cache

n MCDRAM
n DDR4 

SDRAM

all within a 
3 Tflop/s 
node

c/o M. Farhan, KAUST



Two decades of evolution

ASCI Red at Sandia 
1.3 TF/s, 850 KW

1997

Cavium ThunderX2
~ 1.1 TF/s, ~ 0.2 KW

2017

3.5 orders of 
magnitude



Hierarchies do not necessarily match!

As humans managing implementation complexity, 
we would all prefer:

● hierarchical algorithms on flat architectures

or even (suboptimally) 
● flat algorithms on hierarchical architectures



Reality

We go to exascale 
with the architectures we have, 

not with the architectures we want. *

● A 4,000-node subset of ORNL’s Summit sustains 1.88 
ExaOp/s of mixed precision on a genomics application

● Majority of these operations are half-precision (16-bit 
floating point) NVIDIA tensor-core matrix-matrix 
multiplies

* paraphrase of D. Rumsfeld, Cable News Network, 8 Dec 2004.



Now: hierarchy of precisions



Now: hierarchy of ranks



Architectural challenge
● Memories are hierarchical in an increasing 

number of levels
- stronger-than-ever incentive to tune algorithms 

for register & cache reuse
- additional flop/s cost little, within a given 

workingset of data that fits in highest level 
cache

- more computation leading to less 
communication and/or synchronization may be 
a good trade-off



It’s not just bandwidth; it’s energy

● Access SRAM (registers, cache) ~   10 fJ/bit

● Access DRAM on chip ~    1 pJ/bit

● Access HBM/MCDRAM (few mm) ~   10 pJ/bit

● Access DDR3 (few cm) ~ 100 pJ/bit

similar ratios for latency as for bandwidth and 
energy

~ 104 advantage in energy for staying in cache!



Algorithmic imperatives
1) Reside “high” on the memory hierarchy

◆ as close as possible to the processing elements
2) Reduce communication and synchrony

◆ in frequency and/or span
3) … SIMT-style batching … algorithm-based 
fault tolerance … etc.



Widely applicable strategies

1) Employ dynamic runtime systems based on 

directed acyclic task graphs (DAGs)

◆ e.g., Charm++, Quark, StarPU, Legion, OmpSs, HPX, 

ADLB, Argo, ParSec

◆ dynamic scheduling capabilities in OpenMP

2) Exploit data sparsity of hierarchically low-rank 

type

◆meet the “curse of dimensionality” with the “blessing of 

low rank”  

3) Code libraries to various architecture while 

presenting high-level application programmer 

interface



1) Taskification based on DAGs
n Advantages

◆ remove artifactual synchronizations in the form 
of subroutine boundaries

◆ remove artifactual orderings in the form of pre-
scheduled loops

◆ expose more concurrency
n Disadvantages

◆ pay overhead of managing task graph
◆ potentially lose some memory locality



2) Hierarchically low-rank operators
n Advantages

◆ shrink memory footprints to live higher on the 
memory hierarchy
■ higher means quick access (↑ arithmetic intensity)

◆ reduce operation counts
◆ tune work to accuracy requirements

■ e.g., preconditioner versus solver
n Disadvantages

◆ pay cost of compression
◆ not all operators compress well



3) Code to the architecture
n Advantages

◆ tiling and recursive subdivision create large 
numbers of small problems that can be marshaled 
for batched operations on GPUs and MICs
■ amortize call overheads
■ polyalgorithmic approach based on block size

◆ non-temporal stores, coalesced memory accesses, 
double-buffering, etc. reduce sensitivity to memory

n Disadvantages
◆ code is more complex
◆ code is architecture-specific at the bottom



1) Reduce over-ordering and synchronization 
through DAGs, ex.: generalized eigensolver



Loop nests and subroutine calls, with their 
over-orderings, can be replaced with DAGs
● Diagram shows a 

dataflow ordering of the 
steps of a 4×4 symmetric 
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges 
are data dependencies

● Time is vertically 
downward

● Wide is good; short is 
good
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2) Reduce memory footprint and 
operation complexity with low rank

• Replace dense blocks with hierarchical 
representations when they arise during matrix 
operations
– use high accuracy (high rank, but typically less than 

full) to build “exact” solvers
– use low accuracy (low rank) to build preconditioners

• Tune block structure and rank parameters to 
variety of hardware configurations



Key tool: hierarchical matrices
• [Hackbusch, 1999] : off-diagonal blocks of typical 

differential and integral operators have low effective rank
• Similarly: Schur complements of the above, covariance 

matrices from statistics, Hessians from optimization, etc.
• By exploiting low rank, k , memory requirements and 

operation counts approach optimal in matrix dimension 
n:
– polynomial in k
– lin-log in n
– constants carry the day

• Such hierarchical representations navigate a compromise
– fewer blocks of larger rank (“weak admissibility”) or 
–more blocks of smaller rank (“strong admissibility”)



Recursive construction of an H-matrix

Step 0 Step 1 Step 2 Step 3

Specify two parameters:
n Block size acceptably 

small to handle 
densely

n Rank acceptably 
small to represent 
block

Until each block is 
acceptably small:
n Is rank acceptably 

small?
n If not, subdivide 

block
Take union of leaf blocks



Tree-like structures of
“Standard (strong)” vs. “weak” admissibility

weak admissibilitystrong admissibility
after Hackbusch, et al., 2003 



Hierarchically low-rank “renaissance”

c/o Rio Yokota  (Tokyo Tech/KAUST)



Must address the  tension between
n highly uniform vector, matrix, and general SIMT 

operations
n hierarchical algorithms with tree-like data structures and 

scale recurrence

H-
matrices

GPU, 
MIC

Hierarchical algorithms and extreme scale



Tile Low Rank (TLR) is a compromise 
between optimality and complexity



Example: Cholesky



Panel  algorithm 
(LAPACK’s POTRF)

Left- and right-looking variants, column-blocked for BLAS3
Decreasing concurrency
Artifactual over-ordering



Tile algorithm 
(PLASMA, MAGMA, Chameleon)

Implemented with DAG-based scheduling



Panel

Performance evolution of dense Cholesky



Performance evolution of dense Cholesky



Performance evolution of dense Cholesky



Performance evolution of dense Cholesky



Performance evolution of dense Cholesky



Performance evolution of dense Cholesky



Performance evolution of dense Cholesky



Performance evolution of dense Cholesky



Performance evolution of dense Cholesky

(first factor based on tiling;
successive factors, 2007-2017, based on Top500 hardware generations)



Performance evolution of dense Cholesky



HiCMA vs. Intel MKL on shared memory
Geospatial statistics (Gaussian kernel) to accuracy 1.0e-8
n Three generations of Intel manycore (Sandy Bridge, Haswell, Skylake)
n Two generations of linear algebra (classical dense and tile low rank) 

Red arrows: 
speedups from 

hardware, 
same algorithm

Green arrows: 
speedups from 

algorithm, 
same hardware

Blue arrow:
From both

classical

tile low rank

Akbudak, Ltaief, Mikhalev, Charara,  & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations, 
Europar 2018.



Nearly 2 orders of 
magnitude for 0.5M size 
matrix on 16 nodes

HiCMA vs. ScaLAPACK on distributed memory

EuroPar 2018



Memory footprint for DP matrix of size 1M

4 TB

EuroPar 2018

1 to 2 orders of 
magnitude less, 
depending upon 

accuracy



HiCMA on distributed memory
Geospatial statistics 
(Gaussian kernel) to 
accuracy 1.0e-8
n Cray XC40 

(“Shaheen”, 32 
Haswell cores per 
node)

n Range of problem 
sizes and core 
count

Akbudak, Ltaief, Mikhalev, Charara,  & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations, 
Europar 2018.

Missing upper 
end: insufficient 

memory
Missing lower 

end: insufficient 
work



Execution traces
Chameleon: Dense DPOTRF time 18.1s

4 nodes of Shaheen with a matrix size of 54K

Akbudak, Ltaief, Mikhalev, Charara,  & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations, 
Europar 2018.



Execution traces
HiCMA: TLR DPOTRF time 1.8s (10X faster)

4 nodes of Shaheen with a matrix size of 54K

Akbudak, Ltaief, Mikhalev, Charara,  & Keyes, Exploiting Data Sparsity for Large-scale Matrix Computations, 
Europar 2018.



So far, just Tile Low Rank…



Now: general H-matrices

n First advance: adopt H 2 matrix structure
n Second advance: use randomized SVD 

(Halko, Martinsson & Tropp, 2009) to form 
the low-rank blocks at the leaves
- an easy, flop-intensive GEMM-based flat 

algorithm

n Third advance: implement using “batches” 
on GPUs/multi-GPUs



H 2 hierarchical matrix representation

1D 2D

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and 
Compression, ACM TOMS 45:3 (2019)



Hierarchical MatVec execution time

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and 
Compression, ACM TOMS 45:3 (2019)

Linear

matrix sizes from 16K to 1M



Hierarchical MatVec bandwidth

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and 
Compression, ACM TOMS 45:3 (2019)

Theoretical peak



Hierarchical compression

Boukaram, Turkiyyah & Keyes, Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and 
Compression, ACM TOMS 45:3 (2019)



Adaptive Randomized Approximations (ARA)



matrices

Comparison with Jacobi (Givens) SVD

Greater 
advantage 

at larger size
More than 2 orders 

of magnitude 
for DP



Hierarchical Adaptive Randomized Approximation
(HARA)

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from 
MatVec Operations, submitted to SISC (2019)



Performance of HARA on GPU
Matrix sizes from 16K to 256K; accuracies 10-2 to 10-4

Time and no. samples to compress

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from 
MatVec Operations, submitted to SISC (2019)



H matrix-H matrix multiplication

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical Matrices from 
MatVec Operations, submitted to SISC (2019)

Fast matvecs ⇒ fast approx inversions with Newton-Schulz



c/o Rio Yokota  (Tokyo Tech/KAUST)

Memory complexity of FMM vs H (HLRA)



Conclusions

n Plenty of ideas exist to adapt or substitute for 

favorite solvers with methods that have:

◆ reduced synchrony (in frequency and/or span)

◆ higher residence on the memory hierarchy

◆ greater SIMT/SIMD-style shared-memory concurrency

n Programming models and runtimes may have 

to be stretched to accommodate

n Everything should be on the table for trades, 

beyond disciplinary thresholds è “co-design”



“Hourglass” model for algorithms
(borrowed from internet protocols)

applications

architectures

algorithmic 
infrastructure



Hierarchical Computations on 
Manycore Architectures: HiCMA*

* appearing incrementally at  https://github.com/ecrc



This talk was made possible through baseline KAUST 
support for ECRC research scientists and our vendor-
sponsored efforts on hosting FMM and H-matrix 
methods on MIC and GPU architectures
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