Low rank approximation of a sparse matrix

L. Grigori

Inria Paris and UPMC with A. Ayala, S. Cayrols, J. Demmel

February 2017

Plan

Low rank matrix approximation

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Plan

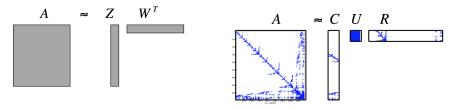
Low rank matrix approximation

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTF

Low rank matrix approximation

Problem: given $m \times n$ matrix A, compute rank-k approximation ZW^T , where Z is $m \times k$ and W^T is $k \times n$.



- Problem with diverse applications
 - $\hfill\Box$ from scientific computing: fast solvers for integral equations, H-matrices
 - □ to data analytics: principal component analysis, image processing, ...

$$Ax \rightarrow ZW^Tx$$
Flops $2mn \rightarrow 2(m+n)k$

Low rank matrix approximation

Best rank-k approximation $A_k = U_k \Sigma_k V_k$ is rank-k truncated SVD of A [Eckart and Young, 1936]

$$\min_{\text{rank}(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_2 = ||A - A_k||_2 = \sigma_{k+1}(A)$$
 (1)

$$\min_{rank(\tilde{A}_k) \le k} ||A - \tilde{A}_k||_F = ||A - A_k||_F = \sqrt{\sum_{j=k+1}^n \sigma_j^2(A)}$$
 (2)

Original image of size 919×707

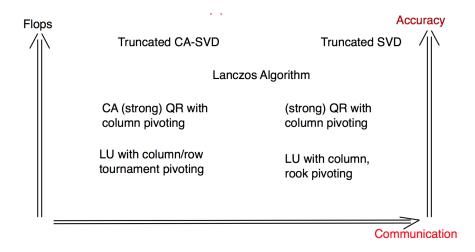
Rank-38 approximation, SVD

Rank-75 approximation, SVD

Image source: https:

//upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg

Low rank matrix approximation: trade-offs



Rank revealing QR factorization

Given A of size $m \times n$, consider the decomposition

$$AP_c = QR = Q \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix}, \tag{3}$$

where R_{11} is $k \times k$, P_c and k are chosen such that $||R_{22}||_2$ is small and R_{11} is well-conditioned.

- Q(:,1:k) forms an approximate orthogonal basis for the range of A,
- $P_c \begin{bmatrix} R_{11}^{-1} R_{12} \\ -I \end{bmatrix}$ is an approximate right null space of A.

Rank revealing QR factorization

The factorization from equation (3) is rank revealing if

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{11})}, \frac{\sigma_j(R_{22})}{\sigma_{k+j}(A)} \leq q_1(n,k),$$

for $1 \le i \le k$ and $1 \le j \le \min(m, n) - k$, where

$$\sigma_{max}(A) = \sigma_1(A) \ge \ldots \ge \sigma_{min}(A) = \sigma_n(A)$$

It is strong rank revealing [Gu and Eisenstat, 1996] if in addition

$$||R_{11}^{-1}R_{12}||_{max} \le q_2(n,k)$$

- Gu and Eisenstat show that given k and f, there exists a P_c such that $q_1(n,k) = \sqrt{1+f^2k(n-k)}$ and $q_2(n,k) = f$.
- Factorization computed in *O*(*mnk*) flops.

Plan

Low rank matrix approximation

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTF

Low rank approximation based on LU factorization

Given desired rank k, the factorization has the form

$$P_r A P_c = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ & S(\bar{A}_{11}) \end{pmatrix}, \tag{4}$$

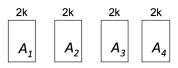
where $A \in \mathbb{R}^{m \times n}$, $\bar{A}_{11} \in \mathbb{R}^{k,k}$, $S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{-1}\bar{A}_{12}$.

■ The rank-k approximation matrix \tilde{A}_k is

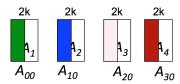
$$\tilde{A}_{k} = \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{-1} \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix} = \begin{pmatrix} A_{11} \\ \bar{A}_{21} \end{pmatrix} \bar{A}_{11}^{-1} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \end{pmatrix}.$$
 (5)

- $ar{A}_{11}^{-1}$ is never formed, its factorization is used when \tilde{A}_k is applied to a vector.
- In randomized algorithms, $U = C^+AR^+$, where C^+, R^+ are Moore-Penrose generalized inverses.

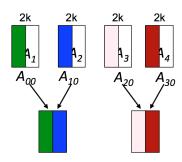
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



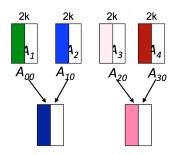
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ji}



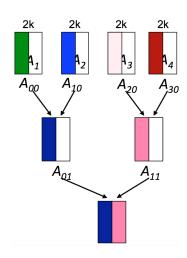
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ji}



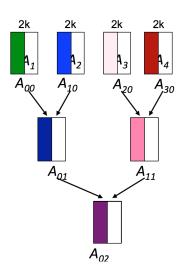
- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ji}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \Box At each node j do in parallel
 - Let A_{v,i-1}, A_{w,i-1} be the cols selected by the children of node j
 - Select k cols from (A_{v,i-1}, A_{w,i-1}), by using QR with column pivoting
- Return columns in A_{ii}



- Partition $A = (A_1, A_2, A_3, A_4)$.
- Select k cols from each column block, by using QR with column pivoting
- At each level i of the tree
 - \square At each node j do in parallel
 - Let $A_{v,i-1}, A_{w,i-1}$ be the cols selected by the children of node j
 - Select k cols from $(A_{v,i-1}, A_{w,i-1})$, by using QR with column pivoting
- Return columns in A_{ii}



Our LU_CRTP factorization - one block step

One step of truncated block LU based on column/row tournament pivoting on matrix A of size $m \times n$:

1. Select k columns by using tournament pivoting, permute them in front, bounds for s.v. governed by $q_1(n, k)$

$$AP_c = Q \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ & R_{22} \end{pmatrix}$$

2. Select k rows from $(Q_{11}; Q_{21})^T$ of size $m \times k$ by using tournament pivoting,

$$P_rQ = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix}$$

such that $||\bar{Q}_{21}\bar{Q}_{11}^{-1}||_{max} \leq F_{TP}$ and bounds for s.v. governed by $q_2(m,k)$. Binary tree of depth $\log_2(n/k)$,

$$F_{TP} \le \frac{1}{\sqrt{2k}} \left(n/k \right)^{\log_2\left(\sqrt{2}fk\right)}. \tag{6}$$

Orthogonal matrices

The factorization

$$P_r Q = \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ \bar{Q}_{21} & \bar{Q}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ S(\bar{Q}_{11}) \end{pmatrix}$$
(7)

where $S(\bar{Q}_{11})=\bar{Q}_{22}-\bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{Q}_{12}=\bar{Q}_{22}^{-T}$ satisfies:

$$\rho_j(\bar{Q}_{21}\bar{Q}_{11}^{-1}) \leq F_{TP},$$
 (8)

$$\frac{1}{q_2(m,k)} \leq \sigma_i(\bar{Q}_{11}) \leq 1, \tag{9}$$

for all $1 \le i \le k$, $1 \le j \le m - k$, where $\rho_j(A)$ is the 2-norm of the j-th row of A, $q_2(m,k) = \sqrt{1 + F_{TP}^2(m-k)}$.

The obtained factorization

$$P_{r}AP_{c} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{A}_{21}\bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ S(\bar{A}_{11}) \end{pmatrix}$$
$$= \begin{pmatrix} I \\ \bar{Q}_{21}\bar{Q}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{Q}_{11} & \bar{Q}_{12} \\ S(\bar{Q}_{11}) \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ R_{22} \end{pmatrix}$$
(10)

where

$$\begin{array}{rcl} \bar{Q}_{21}\bar{Q}_{11}^{-1} & = & \bar{A}_{21}\bar{A}_{11}^{-1}, \\ \bar{A}_{11} & = & \bar{Q}_{11}R_{11} \\ S(\bar{A}_{11}) & = & S(\bar{Q}_{11})R_{22} = \bar{Q}_{22}^{-T}R_{22}. \end{array}$$

Similarities with the proof of existence of a RRLU by [Pan, LAA, 2000].

LU_CRTP factorization - bounds if rank = k

Given A of size $m \times n$, one step of LU_CRTP computes the decomposition

$$\bar{A} = P_r A P_c = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I \\ \bar{A}_{21} \bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ S(\bar{A}_{11}) \end{pmatrix}$$
(11)

where \bar{A}_{11} is of size $k \times k$ and

15 of 24

$$S(\bar{A}_{11}) = \bar{A}_{22} - \bar{A}_{21}\bar{A}_{11}^{-1}\bar{A}_{12} = \bar{A}_{22} - \bar{Q}_{21}\bar{Q}_{11}^{-1}\bar{A}_{12}. \tag{12}$$

It satisfies the following properties:

$$\rho_{I}(\bar{A}_{21}\bar{A}_{11}^{-1}) = \rho_{I}(\bar{Q}_{21}\bar{Q}_{11}^{-1}) \leq F_{TP}, \tag{13}$$

$$||S(\bar{A}_{11})||_{max} \leq \min((1+F_{TP}\sqrt{k})||A||_{max}, F_{TP}\sqrt{1+F_{TP}^2(m-k)}\sigma_k(A))$$

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(\bar{A}_{11})}, \frac{\sigma_j(S(A_{11}))}{\sigma_{k+i}(A)} \leq q(m, n, k), \tag{14}$$

for any
$$1 \le l \le m - k$$
, $1 \le i \le k$, and $1 \le j \le \min(m, n) - k$, $q(m, n, k) = \sqrt{(1 + F_{TP}^2(n - k))(1 + F_{TP}^2(m - k))}$.

Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure
$$G(A^TA)$$
 is an $n^{1/2}$ - separable graph $flops(TP_{FT}) \leq 2nnz(A)k^2$ $flops(TP_{FT}) \leq O(nnz(A)k^{3/2})$ $flops(TP_{BT}) \leq 8\frac{nnz(A)}{P}k^2\log\frac{n}{k}$ $flops(TP_{BT}) \leq O(\frac{nnz(A)}{P}k^{3/2}\log\frac{n}{k})$

Randomized algorithm by Clarkson and Woodruff, STOC'13

Given $n \times n$ matrix A, it computes LDW^T , where D is $k \times k$ such that $||A - LDW^T||_F \le (1 + \epsilon)||A - A_k||_F$, A_k is best rank-k approximation.

$$flops \leq O(nnz(A)) + n\epsilon^{-4}log^{O(1)}(n\epsilon^{-4})$$

Tournament pivoting is faster if $\epsilon \leq \frac{1}{(nnz(A)/n)^{1/4}}$ or if $\epsilon = 0.1$ and $nnz(A)/n \leq 10^4$.

Tournament pivoting for sparse matrices

Arithmetic complexity

A has arbitrary sparsity structure
$$G(A^TA)$$
 is an $n^{1/2}$ - separable graph $flops(TP_{FT}) \leq 2nnz(A)k^2$ $flops(TP_{FT}) \leq O(nnz(A)k^{3/2})$ $flops(TP_{BT}) \leq 8\frac{nnz(A)}{P}k^2\log\frac{n}{k}$ $flops(TP_{BT}) \leq O(\frac{nnz(A)}{P}k^{3/2}\log\frac{n}{k})$

Randomized algorithm by Clarkson and Woodruff, STOC'13

• Given $n \times n$ matrix A, it computes LDW^T , where D is $k \times k$ such that $||A - LDW^T||_F \le (1 + \epsilon)||A - A_k||_F$, A_k is best rank-k approximation.

$$flops \leq O(nnz(A)) + n\epsilon^{-4}log^{O(1)}(n\epsilon^{-4})$$

■ Tournament pivoting is faster if $\epsilon \le \frac{1}{(nnz(A)/n)^{1/4}}$ or if $\epsilon = 0.1$ and $nnz(A)/n \le 10^4$.

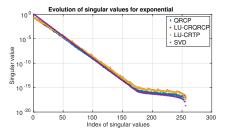
Plan

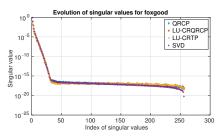
Low rank matrix approximation

LU_CRTP: Truncated LU factorization with column and row tournament pivoting

Experimental results, LU_CRTP

Numerical results





- Left: exponent exponential Distribution, $\sigma_1 = 1$, $\sigma_i = \alpha^{i-1}$ (i = 2, ..., n), $\alpha = 10^{-1/11}$ [Bischof, 1991]
- Right: foxgood Severely ill-posed test problem of the 1st kind Fredholm integral equation used by Fox and Goodwin

Results for image of size 919×707

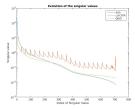
Original image

Rank-38 approx, LUPP

Rank-38 approx, SVD

Rank-38 approx, LU_CRTP

Singular value distribution



Rank-75 approx, LU_CRTP

Comparing nnz in the factors L, U versus Q, R

Name/size	Nnz	Rank K	Nnz QRCP/	Nnz LU_CRTP/	
	A(:,1:K)		Nnz LU_CRTP	Nnz LUPP	
gemat11	1232	128	2.1	2.2	
4929	4895	512	3.3	2.6	
	9583	1024	11.5	3.2	
wang3	896	128	3.0	2.1	
26064	3536	512	2.9	2.1	
	7120	1024	2.9	1.2	
Rfdevice	633	128	10.0	1.1	
74104	2255	512	82.6	0.9	
	4681	1024	207.2	0.9	
Parab_fem	896	128	_	0.5	
525825	3584	512	_	0.3	
	7168	1024	_	0.2	
Mac_econ	384	128	_	0.3	
206500	1535	512	_	0.3	
	5970	1024	_	0.2	

Performance results

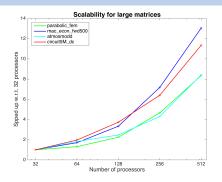
Selection of 256 columns by tournament pivoting

- Mesu (UPMC): Intel Xeon Sandy Bridge (8 cores) 28 nodes, 24 cores per node
- Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices:

- Parab_fem: 528825×528825 , 3,674,625 nnz
- Mac_econ: 206500 × 206500 1,273,389 nnz
- \blacksquare atmosmodd: 1,270,432 \times 1,270,432 8,814,880 nnz
- circuit5M_dc: 3,523,317 × 3,523,317 19,194,193 nnz

Performance results (contd)



	Number of MPI processes				
	32	64	128	256	512
Parab_fem	57.6	44.0	25.7	12.4	6.9
Mac_econ	94.0	55.1	28.2	13.1	7.2
atmosmodd	370.3	203.3	150.1	86.0	44.0
circuit5M_dc	916.0	465.9	245.4	143.1	80.7

- Tournament pivoting: flat local + binary between processes
- \blacksquare SPQR + DGEQP3 for one block of Parab_fem (dimension 528825 imes 16432) is 0.26 + 1129 secs.

Talk based on the papers

- [Demmel et al., 2012] Communication-optimal parallel and sequential QR and LU factorizations, J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou, SIAM Journal on Scientific Computing, Vol. 34, No 1, 2012.
- [Demmel et al., 2015] Communication avoiding rank revealing QR factorization with column pivoting Demmel, Grigori, Gu, Xiang, SIAM J. Matrix Analysis and Applications, 2015.
- Low rank approximation of a sparse matrix based on LU factorization with column and row tournament pivoting, with S. Cayrols and J. Demmel. Inria technical report 9023, 2016.

References (1)

Bischof, C. H. (1991).

A parallel QR factorization algorithm with controlled local pivoting. SIAM J. Sci. Stat. Comput., 12:36–57.

Demmel, J., Grigori, L., Gu, M., and Xiang, H. (2015).

Communication-avoiding rank-revealing qr decomposition.

SIAM Journal on Matrix Analysis and its Applications, 36(1):55–89.

Demmel, J. W., Grigori, L., Hoemmen, M., and Langou, J. (2012).

Communication-optimal parallel and sequential QR and LU factorizations. SIAM Journal on Scientific Computing, (1):206–239. short version of technical report UCB/EECS-2008-89 from 2008.

Eckart, C. and Young, G. (1936).

The approximation of one matrix by another of lower rank. *Psychometrika*, 1:211–218.

Gu, M. and Eisenstat, S. C. (1996).

Efficient algorithms for computing a strong rank-revealing QR factorization. $SIAM\ J.\ Sci.\ Comput.,\ 17(4):848-869.$